Preclinical Molecular Imaging Group

Dr Gabriela Kramer-Marek’s group uses cutting-edge biomedical imaging techniques to gain information about the way particular genes drive cancer progression.

Our group’s long-term goal is to develop specific biomarkers for detecting cancers and to evaluate these biomarkers in pre-clinical cancer models

Notwithstanding the remarkable clinical success of mAb-based treatment regimens, not all patients benefit from them. This can be attributed, at least in part, to the complexity of the tumour microenvironment and its considerable heterogeneity both in terms of the tumour and non-tumour cell components. These phenomena represent a huge challenge in identifying predictive biomarkers and stratifying patient populations for personalised therapy approaches.

Therefore, there is an urgent need to develop assays that will help in three ways:

  1. accurate patient selection
  2. understanding intrinsic resistance mechanisms or the emergence of acquired resistance following treatment initiation and
  3. choosing the most effective combination regimen in circumstances in which single-agent therapies are insufficiently effective.

Currently, the baseline expression level of antigens targeted by therapeutic mAbs can be analysed by methods such as: immunohistochemistry (IHC), flow cytometry, proteomics, or next-generation sequencing of tumour tissues acquired at diagnostic biopsy or intra-operatively. These techniques aid our understanding of how cancer cells adapt to treatment and become resistant, but such methods are inherently invasive, prone to sampling errors caused by inter- and intra-tumour heterogeneity of receptor expression within analysed biopsy specimens and do not lend themselves readily to repeated sampling.

Positron emission tomography (PET), using radiolabelled mAbs, antibody fragments or engineered protein scaffolds (immuno-PET), has the potential to acquire information non-invasively and can be highly complementary to analyses based on tissue acquisition. Accordingly, immuno-PET agents might accurately identify the presence and accessibility of the target and provide a rapid assessment of tumour response to a variety of treatments in a timely fashion (e.g. within 1-2 weeks of treatment initiation).

Furthermore, immuno-PET agents can provide information about the heterogeneity of both target expression and therapeutic response, which are increasingly recognised as key factors in treatment resistance. This especially relates to patients with advanced disease in whom target expression may vary from site to site and a biopsy of a single local or metastatic deposit may not accurately reflect the situation across the entire disease burden. Although introduction of immuno-PET into routine clinical practice may add complexity and increase costs, with appropriate use this imaging modality has the potential to identify patients likely to benefit from therapy and assess the efficacy of novel target-specific drugs.

Against this background, our research focuses on the development and characterisation of targeted-PET radiotracers, including protein-based theranostic agents that enable smart monitoring of immunotherapies and expand opportunities for personalised medicine approaches.

Early diagnosis and individualized therapy have been recognized as crucial for the improvement of cancer treatment outcome. While proper molecular characterization of individual tumour types facilitates choice of the right therapeutic strategies, early assessment of tumour response to therapy could allow the physicians to discontinue ineffective treatment and offer the patient a more promising alternative. Therefore, the role of molecular imaging in elucidating molecular pathways involved in cancer progression and the ability to select the most effective therapy based on the unique biologic characteristics of the patient and the molecular properties of a tumour are undoubtedly of paramount importance.

The mission of this group is to investigate innovative imaging probes and apply them to novel orthotopic or metastatic models that are target driven, to gain information of the way particular oncogenes drive cancer progression through signalling pathways that can be imaged in vivo and, correlate it with target level ex vivo. Such an approach enables non-invasive assessment of biochemical target levels, target modulation and provides opportunities to optimize the drug dosing for maximum therapeutic effect, which leads to the development of better strategies for the more precise delivery of medicine.

The long term goal of our research is to develop specific imaging cancer biomarkers, especially for positron emission tomography (PET) as well as optical imaging and, evaluate these biomarkers in pre-clinical cancer models. Significant efforts are directed towards validating biomarkers for early prediction of treatment response, with the focus on new targeted therapies (such as inhibition of cell signalling pathways).

Our initial portfolio of imaging agents include radiolabelled affibody molecules, TK inhibitors and, conventional tracers that monitor universal markers of tumour physiology.

We are actively supported by other groups from the Division of Radiotherapy and Imaging as well as the Division of Cancer Therapeutics. Moreover, our close association with The Royal Marsden NHS Foundation Trust enables rapid translation of our research to early clinical studies and ensures a fast transition of know-how from the research laboratory to the patient bedside.

Dr Gabriela Kramer-Marek

Group Leader:

Preclinical Molecular Imaging Gabriela Kramer-Marek

Dr Gabriela Kramer-Marek is investigating new ways of molecular imaging in order to predict an individual patient’s response to treatment. Before moving to the ICR, she developed a new approach for non-invasive assessment of HER2 expression in breast cancer.

Researchers in this group

.

Phone: 020 3437 6376

Email: Chiara.DaPieve@icr.ac.uk

Location: Sutton

.

Phone: +44 20 3437 6785

Email: dawoud.dar@icr.ac.uk

Location: Sutton

.

Phone: +44 20 3437 6857

Email: catarina.slobo@icr.ac.uk

Location: Sutton

.

Phone: 020 3437 4549

Email: DavidRobert.Turton@icr.ac.uk

Location: Sutton

Dr Gabriela Kramer-Marek's group have written 63 publications

Most recent new publication 2/2025

See all their publications

Recent discoveries from this group

16/06/22

Differentiating brain cancer cells

An innovative light-activated therapy developed at The Institute of Cancer Research, London, could help detect and treat an aggressive brain cancer type, a new study shows. 

The ‘photoimmunotherapy’ combines a special fluorescent dye with a cancer-targeting compound, which together boosts the body’s immune response.

In studies in mice, the combination was shown to improve the visibility of cancer cells during surgery and, when activated by near-infrared light, to trigger an anti-tumour effect.

The treatment, studied by an international team of researchers from the ICR and the Medical University of Silesia, Poland, could ultimately help surgeons to remove brain cancers like glioblastoma more effectively, and boost the body’s response to cancer cells that remain after surgery. 

The study was largely funded by the Cancer Research UK Convergence Science Centre at the ICR and Imperial College London – a unique partnership that is bringing together scientists from the engineering, physical and life sciences to develop innovative ways to address challenges in cancer. It was also supported by the Swedish company AffibodyAB.

Lighting-up brain cancer

Glioblastoma multiforme, also known as GBM, is one of the most common and aggressive types of brain cancer. New ways to improve surgery could help patients live for longer.

Surgeons often use a technique called Fluorescence Guided Surgery to treat diseases like glioblastoma and other brain cancers, which uses dyes to help identify the tumour mass to be removed during surgery.

But due to these tumours growing in sensitive areas of the brain like the motor cortex, which is involved in the planning and control of voluntary movements, glioblastoma surgery can leave behind residual tumour cells that can be very hard to treat – and which mean the disease can come back more aggressively later. 

The new research, published in the journal BMC Medicine, builds on Fluorescence Guided Surgery using a novel technique called photoimmunotherapy (PIT).

This treatment uses synthetic molecules called ‘affibodies’– small proteins engineered in the lab to bind with a specific target with high precision.

In this study, the researchers combined an ‘affibody’ created to recognise a protein called EGFR – which is mutated in many cases of glioblastoma – with a fluorescent molecule called IR700, which is used in surgery. 

Shining light on these compounds causes the fluorescent dye to glow, highlighting microscopic regions of tumours left in the brain, while switching to near-infrared light triggers anti-tumour activity that kills tumour cells.

Offering new hope for brain cancer

The researchers tested this combined molecule, or ‘conjugate’ – known scientifically as ZEGFR:03115-IR700 – in mice with glioblastoma. They could see the cancer-targeting compound fluorescing in the brain tumours during surgery, just one hour after administration. 

Shining near-infrared light on the tumour cells then activated the anti-tumour effect of the compound, killing cancer cells: scans of mice treated with the compound showed distinct signs of tumour cell death compared with untreated mice. 

Photoimmunotherapy also triggered immune responses in the body that could prime the immune system to target cancer cells, so the treatment could help prevent glioblastoma cells from coming back after surgery.

As well as being a possible future treatment for glioblastoma, the approach used for ZEGFR:03115-IR700 could also be adapted against other targets in other forms of cancer, using new affibody molecules.

Researchers at the ICR are now also studying the treatment in the childhood cancer neuroblastoma.

Study leader Dr Gabriela Kramer-Marek, Team Leader in Preclinical Molecular Imaging at the ICR, said:

“Brain cancers like glioblastoma can be hard to treat and sadly, there are too few treatment options for patients. Surgery is challenging due to the location of the tumours, and so new ways to see tumour cells to be removed during surgery, and to treat residual cancer cells that remain afterwards, could be of great benefit. 

“Our study shows that a novel photoimmunotherapy treatment using a combination of a fluorescent marker, ‘affibody’ protein and near-infrared light can both identify and treat leftover glioblastoma cells in mice. In the future, we hope this approach can be used to treat human glioblastoma and potentially other cancers too.”

As well as being a world leading cancer research organisation, we are a charity. With the help of people like you, our research is helping patients live longer and live well with cancer. Support our research today to unlock new combination treatments, so more people will survive cancer.

Donate today

Professor Axel Behrens, Scientific Director of the Cancer Research UK Convergence Science Centre at the ICR and Imperial College London, and Leader of the Cancer Stem Cell Team at the ICR, said:

“Multidisciplinary working is critical to finding innovative solutions to address the challenges we face in cancer research, diagnosis and treatment – and this study is a great example of how researchers at our centre are working across traditional discipline boundaries. This research demonstrates a novel approach to identifying and treating glioblastoma cells in the brain using light to turn an immunosuppressive environment into an immune-vulnerable one, and which has exciting potential as a therapy against this aggressive type of brain tumour."