Molecular and Systems Oncology Group

Dr Paul Huang’s group aims to understand how networks of signalling-proteins control tumour progression and drug resistance in cancer.

Our group seeks to understand the underlying reasons as to why tumours go on to develop resistance and find new ways to effectively treat patients who relapse as a result of acquired drug resistance.

Professor Paul Huang

Group Leader:

Molecular and Systems Oncology Dr Paul Huang

Professor Paul Huang uses systems biology and molecular pathology to study drug resistance in sarcomas and lung cancer. He trained at Imperial College London and Massachusetts Institute of Technology, and was awarded a Sir Henry Wellcome Fellowship in 2009 and a Cancer Research UK Career Establishment Award in 2015.

Researchers in this group

Yeasmin .

Phone: +44 20 3437 6659

Email: [email protected]

Location: Sutton

I am a higher scientific officer. My work involves Nanostring gene expression analysis to establish molecular signatures or biomarkers for targeted therapy response in sarcoma trials.

Sara Arfan .

Email: [email protected]

Location: Sutton

I am PhD student focusing on understanding angiosarcomas. My work involves molecular profiling of angiosarcoma patient samples to better understand mechanisms of treatment response and resistance and identify potential biomarkers.

Amani Arthur .

Email: [email protected]

Location: Sutton

I am currently working on utilising radiogenomics to understand heterogeneity and therapy response in soft tissue sarcoma, and whether combining imaging and molecular data can improve patient outcomes.

Silvia Brusco .

Email: [email protected]

Location: Sutton

I'm a PhD student from Turin, Italy, and my project focuses on leiomyosarcoma, an aggressive soft tissue sarcoma subtype. My aim is to use RNA sequencing and proteomics to understand evolution of localised to metastatic disease with the goal of identifying new therapies for patients.

Avirup .

Phone: +44 20 3437 6680

Email: [email protected]

Location: Sutton

My research aims to identify candidate biomarkers for improving neoadjuvant therapy in high-risk soft tissue sarcomas. This convergence science project uses an explant-in-chip model developed by the Overby group, our collaborators at Imperial College London.

.

Phone: +44 20 3437 7054

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6020

Email: [email protected]

Location: Sutton

Matt Guelbert .

Email: [email protected]

Location: Sutton

I'm a first year PhD student. My research is interested in developing spatial proteomic sampling techniques to better understand intratumoral heterogeneity within soft tissue sarcomas.

Jingqi .

Email: [email protected]

Location: Sutton

I am a PhD student co-supervised by Dr Sam Au at Imperial College London. My project is on developing a microfluidic chip to study how extracellular matrix components affect tumour cell behaviour during metastatic colonisation in the lung, with a focus on using hydrogels to mimic the tumour microenvironment.

Dr Andrew Jenks .

Email: [email protected]

Location: Sutton

I began my postdoctoral career at the ICR in 2015. Initially working for the Signal Transduction Team (Barbara Tanos) and subsequently joining the Molecular and Systems Oncology Team in 2018. My current research is focused on understanding sub-clonal interactions and tumour heterogeneity driving EGFR inhibitor resistance in lung cancer.

Head shot of Pooja Kaur .

Email: [email protected]

Location: Sutton

I am a first-year PhD student split between Imperial College London (Ishihara lab) and the Institute of Cancer Research (Huang lab). My research will be focused on the bioengineering and development of immunomodulatory agents designed to target the extracellular matrix as a novel therapeutic strategy to treat sarcoma.

Kaan Low .

Phone: +44 20 3437 6918

Email: [email protected]

Location: Sutton

I am a Higher Scientific Officer currently investigating the drug resistance mechanisms in lung cancer patients with EGFR Exon20 insertion mutations using gene editing approaches such as CRISPR-Cas9.

Valeriya .

Phone: +44 20 7153 5082

Email: [email protected]

Location: Sutton

I’m Valeriya, a post doctoral researcher. I’m analysing matrisome and adhesome of leiomyosarcoma and using leiomyosarcoma-specific models of extracellular matrix to identify the drives of metastasis, in search for new drug targets.

Yuen Bun Tam .

Email: [email protected]

Location: Sutton

I am a PhD student working to understand the mechanisms of response and resistance in alveolar soft part sarcoma to the TKI cediranib, with the aims of identifying new biomarkers and therapeutic strategies to improve patient outcome.

.

Phone: +44 20 3437 3609

Email: [email protected]

Location: Sutton

Professor Paul Huang's group have written 132 publications

Most recent new publication 8/2024

See all their publications

Sarcoma

Soft tissue sarcomas (STS) are a group of rare cancers that originate from supporting and connective tissue such as fat, muscle and blood vessels. This is a complex and highly diverse group of tumours that consists of more than 70 different types and can be found anywhere in the body. This complexity makes it challenging to effectively treat these cancers and outcomes for patients with advanced disease remain very poor.

Working closely with The Royal Marsden Sarcoma Unit (led by Dr Robin Jones), one of the largest specialist sarcoma treatment centres in Europe, the laboratory is currently focused on the following projects:

  • Proteomic profiling of STS in large retrospective series, clinical trials of targeted agents and rare sarcoma entities. We also lead on the proteomic analysis of sarcoma cases from the 100,000 Genomes Project as part of the Sarcoma Genomic England Clinical interpretation Partnership (GeCIP).
  • Resistance to targeted therapies including investigating clinical and preclinical mechanisms of drug resistance to kinase inhibitors such as pazopanib, regorafenib and cediranib, with a view to developing strategies to overcome resistance and achieve durable drug responses in patients.
  • Patient-derived model development for drug screening and mechanistic studies of therapy resistance in STS with a focus on developing models for common and rare sarcoma entities, lung metastasis and paired pre- and post-treatment tumours.
  • Prognostic and predictive biomarkers for patient stratification and early detection to deliver targeted therapy to patients likely to receive benefit while sparing those unlikely to respond to treatment from unnecessary side effects.

Lung cancer

Lung cancer is the largest cancer killer worldwide and contributes to 20% of all cancer deaths. Targeted therapies are routinely used for selected molecular subtypes of lung cancer such as those driven by mutant EGFR and ALK fusions.

However, tumours can find ways to overcome the effects of these drugs and rapidly acquire resistance leading to inevitable relapse in all patients within a year of treatment.

Our research in lung cancer focuses on understanding how tumours evolve to acquire drug resistance and develop strategies to tackle resistance to achieve lasting drug responses in patients.

Current project include:

  • Signalling mechanisms of resistance to EGFR inhibitors. Funded by Cancer Research UK, we are using molecular and chemical profiling strategies to identify mechanisms of intrinsic and acquired resistance to EGFR inhibitors including uncovering new signalling dependencies in mutant EGFR-driven lung cancers.
  • Intratumoural heterogeneity and subclonal interactions. We are exploiting proteomics and phosphoproteomics to investigate the signalling pathways driving subclonal interactions and tumour evolution in response to targeted therapy. Unpicking these signalling mechanisms may aid in the development of new salvage therapies for patients who develop acquired drug resistance.
  • Characterising exceptional response to targeted therapy. A small number of individuals, known as “exceptional responders”, show remarkable sensitivity and durable response to cancer treatment. We study and model such exceptional response in the laboratory to uncover mechanisms that confer long-term sensitivity to targeted agents.


Developing resistance to cancer drugs remains one of the biggest contributors to cancer deaths worldwide. Solving this problem will bring us one step closer to improving cure rates in patients.

The Molecular and Systems Oncology Group seeks to understand the underlying reasons as to why tumours go on to develop resistance and find new ways to effectively treat patients who relapse as a result of acquired drug resistance.

In doing so, we also aim to discover more accurate methods to stratify and predict which patients are likely to receive long-term benefit from therapy as a first step towards the development of companion diagnostics.

To address this problem, our laboratory concentrates on two interrelated areas of precision cancer medicine: (1) targeted therapy and drug resistance and (2) translational proteomics.

Focusing on sarcomas and lung cancers, two cancer types with particularly poor patient outcomes, we have a track record in the successful use of next generation proteomic profiling to deliver new strategies for combating drug resistance and identifying robust predictive and prognostic biomarkers.

Working in partnership with our clinical collaborators at the The Royal Marsden NHS Foundation Trust and other oncology centres worldwide, we lead on translational studies for several clinical trials of novel drug agents in sarcomas and lung cancer.

Our ultimate goal is to deliver an individualised approach to treatment and improve the long-term outcomes in sarcoma and lung cancer patients who currently have a poor prognosis.

Recent discoveries from this group

27/07/23

Kaposi sarcoma by Yale Rosen 945x532

Image: Kaposi sarcoma (cropped image). Credit: Yale RosenCC BY-SA 2.0

Scientists have unveiled the first and largest encyclopaedia of protein alterations in soft tissue sarcomas – opening the door to a new era of understanding and treatment for this group of rare cancers, which account for around 4,000 cases in the UK each year.

The pioneering encyclopaedia, or ‘Rosetta Stone’, of sarcoma biology compiles a wealth of information that could help untangle the protein changes driving sarcomas’ growth, spread and survival.

The findings, published in Nature Communications, will allow researchers to tap into the potential of immunotherapy in this cancer type which although rare in adults, makes up to 15 per cent of cancers in kids, teenagers and young adults. It could also identify people at higher risk of relapse and provide new ways to personalise treatments.

Researchers hope better treatment in this group of patients could lead to more patients being cured of their disease, and also help them live longer cancer-free lives with fewer long term side effects from harsh chemotherapy.

The encyclopaedia, developed by a team of researchers and clinicians led by The Institute of Cancer Research, London, comprises data from 321 people – including children, teenagers and adults – with 11 different types of sarcoma tumours. Some patients with sarcoma currently face limited treatment options.

Understanding what drives tumours

Researchers looked at patient samples to uncover the ‘proteomic profile’ of the sarcoma tumours. These proteomic profiles are snapshots of all the different proteins in different tumours, which help researchers better understand how the proteins are functioning and driving them.

Since most approved cancer drugs work by targeting proteins, understanding more about the proteins driving sarcoma could lead to new targeted drugs.

The new insights have also uncovered new immunotherapy targets, including proteins involved in the complement cascade – a key part of our innate immune system. The new targets could ultimately lead to new ways of treating “immune cold” sarcomas, which are not properly recognised by the immune system and do not respond well to current immune checkpoint drugs.

Tailored treatment

The encyclopaedia has also allowed researchers to identify proteins that can be measured to help predict which tumours are particularly high-risk and aggressive. This could, in the future, pave the way for more tailored treatment for individuals, for example by identifying patients who may benefit from more aggressive treatment.

The researchers were also able to categorise tumours into a series of interconnected biological networks called ‘proteomic modules’. They identified 14 different modules, which can act as ‘signatures’, or clues, that could help researchers and clinicians to better understand tumours, predict outcomes and assess clinical risk to improve patient care.

This research was set up through funding from different charities, including the ICR itself – a research institute as well as a charity – the Sarah Burkeman Trust, Sarcoma UK, Cancer Research UK, CCLG, the Desmoid Tumour Research Foundation, the Sarcoma Foundation of America and The Royal Marsden Cancer Charity.

It can be challenging for researchers to secure the funding needed to deliver a large-scale and comprehensive study of a rare cancer like sarcoma. It was thanks to funding from different charities that this study was possible.

'A vital resource'

Study leader Dr Paul Huang, Team Leader of the Molecular and Systems Oncology Team at the ICR, said:

"Our 'encyclopaedia' of protein alterations is a vital resource – a Rosetta Stone of sorts that will help us unravel the complex language of sarcoma tumours. This will allow us to explore new avenues of personalised treatment, offering renewed hope for people with sarcoma.

“Our findings hold promise for the development of new targeted treatments and immunotherapies that can disrupt the underlying processes driving sarcoma. I am hopeful that this study will lead to improved treatment outcomes and a better quality of life for sarcoma patients."

Immunotherapy is already transforming lives, but we need to untap its full potential. Please donate monthly to support our research plans over several years, helping people with cancer live longer and offering many more a cure.

Donate now