Paediatric Solid Tumour Biology and Therapeutics Group

Professor Louis Chesler’s group is investigating the genetic causes for the childhood cancers, neuroblastoma, medulloblastoma and rhabdomyosarcoma. 

Research, projects and publications in this group

Our group's aim is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma.

The goal of our laboratory is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma, three paediatric solid tumours in which high-risk patient cohorts can be defined by alterations in a single oncogene. We focus on the role of the MYCN oncogene, since aberrant expression of MYCNis very significantly associated with high-risk in all three diseases and implies that they may have a common cell-of-origin.

Elucidating the molecular signalling pathways that control expression of the MYCN oncoprotein and targeting these pathways with novel therapeutics is a major goal of the laboratory. We use a variety of innovative preclinical drug development platforms for this purpose.

Technologically, we focus on genetically engineered cancer models incorporating novel imaging (optical and fluorescent) modalities that can be used as markers to monitor disease progression and therapeutic response.

Our group has several key objectives:

  • Mechanistically dissect the role of the MYCN oncogene, and other key oncogenic driver genes in poor-outcome paediatric solid tumours (neuroblastoma, medulloblastoma, rhabdomyosarcoma).
  • Develop novel therapeutics targeting MYCN oncoproteins and other key oncogenic drivers
  • Develop improved genetic cancer models dually useful for studies of oncogenesis and preclinical development of novel therapeutics.
  • Use such models to develop and functionally validate optical imaging modalities useful as surrogate markers of tumour progression in paediatric cancer.

Professor Louis Chesler

Clinical Senior Lecturer/Group Leader:

Paediatric Solid Tumour Biology and Therapeutics Professor Louis Chesler (Profile pic)

Professor Louis Chesler is working to understand the biology of children’s cancers and use that information to discover and develop new personalised approaches to cancer treatment. His work focuses on improving the understanding of the role of the MYCN oncogene.

Researchers in this group

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6124

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3617

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4186

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3501

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4361

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6118

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6021

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6196

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6258

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6121

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4527

Email: [email protected]

Location: Sutton

.

OrcID: 0000-0003-3977-7020

Phone: +44 20 3437 6109

Email: [email protected]

Location: Sutton

I obtained an MSci in Biochemistry from the University of Glasgow in 2018. In October 2018 I joined the labs of Dr Michael Hubank and Professor Andrea Sottoriva to investigate the use of liquid biopsy to monitor clonal frequency and emergence of resistance mutations in paediatric cancers.

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6358

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6131

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

Professor Louis Chesler's group have written 112 publications

Most recent new publication 1/2025

See all their publications

Vacancies in this group

Working in this group

Postdoctoral Training Fellow - Endocrine Control Mechanisms

  • Chelsea
  • Endocrine Control Mechanisms
  • Salary Range: £45,600 - £55,000 per annum
  • Fixed term

Under the guidance of Professor Cathrin Brisken, we are seeking a highly motivated and ambitious Postdoctoral Training Fellow to combine innovative patient-derived xenograft models and genetic tools to disentangle the role of estrogen and progesterone receptor signaling in breast cancer. The work contributes to gaining more insights into patient-specific hormone dependencies and factors determining them with the aim of personalizing breast cancer therapy and prevention. The successful candidate will be part of a transdisciplinary team of biologists, clinicians and computational scientists and part of close interactions with groups at the ICR, the RMH and King’s College as well Prof. Brisken’s research group at EPFL, Switzerland. About you The successful candidate must have a PhD in biochemistry, pharmacology, cell or molecular biology and demonstrable experience in planning and designing experiments. Ability to write efficient computer code would is desirable. Candidates who are nearing completion of their PhD may apply, but confirmation on awarded PhD is required within 6 months of employment. The ICR has a workforce agreement stating that Postdoctoral Training Fellows can only be employed for up to 7 years as a PTDF at the ICR ( this includes experience gained at PDTF level prior to joining the ICR). For general information on Postdocs at The ICR, more information can be found here. Research Group Information Under the leadership of Professor Cathrin Brisken, The Endocrine Control Mechanisms group are using intraductal mammary gland implantation, and ex vivo studies using breast cancers expanded via intraductal implantation. We also use transcriptomic and proteomic studies to investigate therapeutics for breast cancer patients and improve the development of novel treatment options for them. Directorate Information The Breast Cancer Now Toby Robins Research Centre, within the Division of Breast Cancer Research of the Institute of Cancer Research which is the first centre in the UK entirely devoted to breast cancer research. Our goal is to advance research into the causes, diagnosis and treatment of breast cancer. It is located in state-of-the-art laboratory space, with excellent core facilities and is funded through a long term renewable programme grant from Breast Cancer Now. The Centre is Directed by Clinician Scientist Professor Andrew Tutt, Professor Chris Lord is Deputy Director of the Centre. What we offer A dynamic and supportive research environment Access to state-of-the-art facilities and professional development opportunities Collaboration with leading researchers in the field Competitive salary and pension We encourage all applicants to access the job pack attached for more detailed information regarding this role.

Postdoctoral Training Fellow

  • Chelsea
  • Structural Biology
  • Salary Range: £38,700 - £45,500 per annum
  • Fixed term

Under the leadership of Claudio Alfieri, we are seeking to appoint a Postdoctoral Training Fellow to join the Molecular Mechanisms of Cell Cycle Regulation Group at the Chester Beatty Laboratories, Fulham Road in London. This project aims to investigate the molecular mechanisms of cell cycle regulation by macromolecular complexes involved in cell proliferation decisions, by combining genome engineering, proteomics and in situ structural biology. For general information on Post Doc's at The ICR can be found here. Key Requirements The successful candidate must have a PhD in cellular biochemistry and experience in Cryo-EM and CLEM is desirable. The ICR has a workforce agreement stating that Postdoctoral Training Fellows can only be employed for up to 7 years as PDTF at the ICR, providing total postdoctoral experience (including previous employment at this level elsewhere) does not exceed 10 years Department/Directorate Information: The candidate will work in the Molecular Mechanisms of Cell Cycle Regulation Group within the ICR Division of Structural Biology headed by Prof. Laurence Pearl and Prof. Sebastian Guettler. The division has state-of-the-art facilities for protein expression and biophysics/x-ray crystallography, in particular the Electron Microscopy Facility is equipped with a Glacios 200kV with Falcon 4i detector with Selectris energy filter and the ICR has access to Krios microscopes via eBIC and the LonCEM consortium. We encourage all applicants to access the job pack attached for more detailed information regarding this role. For an informal discussion regarding the role, please contact Claudio Alfieri via Email on [email protected]

Industrial partnership opportunities with this group

Opportunity: A novel test for predicting future cancer risk in patients with inflammatory bowel disease

Commissioner: Professor Trevor Graham

Recent discoveries from this group

24/03/25

New research has provided insight into the biological mechanisms that may contribute to poor outcomes in certain cases of neuroblastoma – a cancer that develops in nerve tissue and primarily affects children.

A high-risk form of the disease that is progressive and difficult to treat is often associated with mutations in the ATRX gene, which controls the expression of multiple sections of the genome and plays a part in children’s development.

Using a range of techniques, the team, led by scientists at The Institute of Cancer Research, London, uncovered how common ATRX alterations affect the local interactions between cancer cells and the body’s immune cells, known as the tumour immune microenvironment (TIME).

By building on this information, researchers should be able to strengthen the understanding of why children with these mutations typically have less positive outcomes. The findings should also drive international efforts to correlate ATRX status more closely with response to the treatments currently given in clinical trials, with the long-term aim of developing more effective treatment regimens for this patient subgroup.

The study was primarily funded by Neuroblastoma UK and Cancer Research UK, and the findings were published in the journal Cancer Letters.

Treatment needs to be more tailored

Currently, all children with high-risk neuroblastoma – with risk being determined by the child’s age and the stage and genetics of the cancer – are treated in the same way. They all receive chemotherapy and a type of immunotherapy called anti GD-2 antibody.

However, the chance of survival for these patients is only about 50 per cent, showing that this treatment approach is often not effective. Among the children who tend to have worse outcomes are those with ATRX alterations, which affect about 10 per cent of high-risk neuroblastoma patients.

Scientists consider people whose cancer has ATRX mutations to represent a specific subgroup of high-risk patients. This is because these alterations never occur alongside amplification of the MYCN gene, which affects about 35 per cent of high-risk patients.

It is not yet known whether neuroblastoma with ATRX mutations is more or less likely than other forms of the disease to respond to immunotherapy. This knowledge gap is limiting scientists’ ability to develop new targeted therapies specific to this patient subgroup.

Making headway in the search for answers

The motivation behind the current study was to try to explain, at least in part, why patients with ATRX-mutated tumours seem destined to face a slowly progressive, treatment-resistant disease course that ultimately results in a poor outcome.

To do this, the team used multiple investigative techniques, working with mouse models, cell lines with different types of ATRX mutations, sequencing datasets and patient samples.

Through a series of experiments, they were able to show that mutations in the ATRX gene lead to the activation of inflammation pathways, which, in turn, increases the recruitment of macrophages into the tumour. Macrophages are a type of immune cell that can, once part of the TIME, promote the survival of cancerous cells, thereby supporting tumour growth.

The scientists demonstrated that the level of immune cell infiltration in tumour samples with ATRX alterations was much higher than that in other subtypes of neuroblastoma, suggesting this may have a role in influencing responses to treatment.

The next stage is to determine whether these genetic alterations are associated with a response to the immunotherapy currently used as standard of care in children with neuroblastoma. If there is a clear link, clinicians could use ATRX status to determine the likely clinical response to this therapy.

“With each experiment, our findings were confirmed”

First author Federica Lorenzi, a Postdoctoral Training Fellow at The Institute of Cancer Research (ICR), said:

“When we first saw the immune changes, we were very surprised and knew we needed to validate this finding in more research models. However, ATRX mutations are only found in one in 10 patients with neuroblastoma, which is a rare disease in itself, so we had few models to work with and very limited data about this subgroup of patients.

“It took us a long time to make new models and to find patient samples and datasets that would help us validate our findings. But with each experiment in a different model, our findings were confirmed.

“One of the challenges we now face is that we need better models of how neuroblastoma cells and immune cells interact. We are working on that as a priority to support further, vital research in this area.”

Senior author Dr Sally George, Group Leader of the Developmental Oncology Group at the ICR and Honorary Consultant Paediatric Oncologist at The Royal Marsden NHS Foundation Trust, said:

“We are delighted to have furthered our understanding of this particular type of high-risk neuroblastoma. More research is needed to translate these findings into a better understanding of how differences in the TIME relate to response to immunotherapy and other agents, but we hope that this insight will contribute to improving outcomes in the future.

“Despite being the most common paediatric solid tumour outside of the brain, neuroblastoma remains challenging to treat in many cases. We are committed to working towards being able to offer each patient targeted treatment based on the genetics of their cancer, which we believe would save many children’s lives each year.”