Paediatric Solid Tumour Biology and Therapeutics Group

Professor Louis Chesler’s group is investigating the genetic causes for the childhood cancers, neuroblastoma, medulloblastoma and rhabdomyosarcoma. 

Research, projects and publications in this group

Our group's aim is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma.

The goal of our laboratory is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma, three paediatric solid tumours in which high-risk patient cohorts can be defined by alterations in a single oncogene. We focus on the role of the MYCN oncogene, since aberrant expression of MYCNis very significantly associated with high-risk in all three diseases and implies that they may have a common cell-of-origin.

Elucidating the molecular signalling pathways that control expression of the MYCN oncoprotein and targeting these pathways with novel therapeutics is a major goal of the laboratory. We use a variety of innovative preclinical drug development platforms for this purpose.

Technologically, we focus on genetically engineered cancer models incorporating novel imaging (optical and fluorescent) modalities that can be used as markers to monitor disease progression and therapeutic response.

Our group has several key objectives:

  • Mechanistically dissect the role of the MYCN oncogene, and other key oncogenic driver genes in poor-outcome paediatric solid tumours (neuroblastoma, medulloblastoma, rhabdomyosarcoma).
  • Develop novel therapeutics targeting MYCN oncoproteins and other key oncogenic drivers
  • Develop improved genetic cancer models dually useful for studies of oncogenesis and preclinical development of novel therapeutics.
  • Use such models to develop and functionally validate optical imaging modalities useful as surrogate markers of tumour progression in paediatric cancer.

Professor Louis Chesler

Clinical Senior Lecturer/Group Leader:

Paediatric Solid Tumour Biology and Therapeutics Professor Louis Chesler (Profile pic)

Professor Louis Chesler is working to understand the biology of children’s cancers and use that information to discover and develop new personalised approaches to cancer treatment. His work focuses on improving the understanding of the role of the MYCN oncogene.

Researchers in this group

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6124

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3617

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4186

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3501

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4361

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6118

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6021

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6196

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6258

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6121

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4527

Email: [email protected]

Location: Sutton

.

OrcID: 0000-0003-3977-7020

Phone: +44 20 3437 6109

Email: [email protected]

Location: Sutton

I obtained an MSci in Biochemistry from the University of Glasgow in 2018. In October 2018 I joined the labs of Dr Michael Hubank and Professor Andrea Sottoriva to investigate the use of liquid biopsy to monitor clonal frequency and emergence of resistance mutations in paediatric cancers.

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6358

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6131

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

Professor Louis Chesler's group have written 113 publications

Most recent new publication 4/2025

See all their publications

Vacancies in this group

Working in this group

Senior Technician - in vivo biology

  • Sutton
  • Research Services
  • Permanent

About you The ICR is one of the world's leading cancer research institutes, aiming to defeat cancer. As a Senior Laboratory Technician you will contribute directly to this mission by supporting vital in vivo research. We are looking for a highly motivated, detail-oriented individual, committed to high-quality work. Key requirements include: Education and Knowledge BSc in Life Sciences or IAT Level 3 (Essential) Home Office Personal Licence (PILA, B, C) or equivalent (Essential) Understanding of tumour biology and pre-clinical models (Desirable) Skills Skilled in dissection, surgery, dosing of agents and sampling techniques (Essential) Strong organisational, communication and interpersonal skills (Essential) Ability to work independently and in a team with other scientists and BSU staff (Essential) Computer proficiency and willingness to pursue professional development (Essential) Experience Proven experience in in vivo oncology and PDX models (Essential) Strong foundation in animal (rodent) husbandry and behaviour (Essential) Experience in stereotaxic surgery, imaging techniques and sample preparation (Desirable) What we offer A dynamic and supportive research environment Access to state-of-the-art facilities and professional development opportunities Collaboration with leading researchers in the field Competitive salary and pension Department/Directorate Information We encourage all applicants to access the job pack attached for more detailed information regarding this role. For an informal discussion regarding the role, please contact Bishani Wickrama via email on: [email protected].

Business Development Manager

  • Sutton
  • Business & Innovation Office
  • £61,275 - £74,175
  • Permanent

About the Role We are seeking a Business Development Manager to join The Institute of Cancer Research’s (ICR’s) Business and Innovation Office and contribute to to support a portfolio of academics by protecting and commercialising their research, supporting them in securing translational funding and to highlight to them the benefits of working with industry. The successful candidate will play a key role in strategic project evaluation, stakeholder engagement, IP protection, commercial deal-making (collaborations and licensing), and translational funding support. Key Responsibilities Identify and assess commercially viable research Protect IP and manage confidentiality agreements Draft and negotiate licensing and collaboration contracts Support translational funding applications Drive spinout opportunity management About You We are looking for a proactive, detail-oriented team player. PhD, MBA or equivalent in a relevant field Experience in business development or technology transfer Direct experience of negotiating and closing deals with external partners Strong communication, negotiation, and organizational skills What We Offer • Supportive, collaborative environment • Career development opportunities • Competitive salary and pension Department/Directorate Information The Business and Innovation Office drives commercialisation and strategic partnerships to maximise patient benefit. For more details, please refer to the job pack. For an informal discussion regarding the role, please contact Dr. Amritha Nair via Email on [email protected]

Industrial partnership opportunities with this group

Opportunity: A novel test for predicting future cancer risk in patients with inflammatory bowel disease

Commissioner: Professor Trevor Graham

Recent discoveries from this group

22/01/25

Doctors could soon be able to better predict an individual patient’s chances of getting cancer and offer them personalised detection and prevention strategies, thanks to a new research project co-led by scientists at The Institute of Cancer Research, London. 

Today, Cancer Research UK, the National Institute for Health and Care Research (NIHR) and the Engineering and Physical Sciences Research Council (EPSRC) announced the launch of the Cancer Data-Driven Detection programme.   

The £10million programme, which will be led by the University of Cambridge, aims to access and link vast quantities of data from different sources - including health records, genomics, family history, demographics, and behavioural data. The research teams will then develop advanced statistical models that will help scientists more accurately predict who is most likely to get cancer.  

Alongside this, the programme will develop powerful new tools which use AI to analyse the data and calculate an individual’s risk of cancer throughout their lifetime.   

Building the infrastructure

Over the next five years, the funding will be used to build the infrastructure required to access and link these datasets, train new data scientists, create the algorithms behind the risk models and evaluate the algorithms and AI tools to ensure that they are giving accurate and clinically useful information about cancer risk.  

The data generated from this research could be used to offer more frequent cancer screening sessions or screening at a younger age to those at higher risk. Those at lower risk could be spared unnecessary tests. People identified as higher risk could also fast-tracked for cancer testing when they go to their GP with possible cancer signs or symptoms.  

The Institute of Cancer Research (ICR)’s role in the project will be to harmonise and analyse the combined data from diverse sources across the UK, including a cohort from the long-running Breast Cancer Now Generations study, to capture a wide range of ethnic, geographical, and socioeconomic characteristics for cancer research.  

Analysing trends in cancer incidence

The ICR team, led by Professor Montserrat Garcia-Closas, will work within the Cancer Epidemiology and Prevention Research Unit (CEPRU) she co-directs, a collaboration between ICR and Imperial College London, and other key institutions across the UK. 

Professor Montserrat Garcia-Closas, Group Leader for the Integrative Epidemiology Group at The Institute of Cancer Research, London, said:  

“We are delighted to be part of this UK-wide initiative involving many institutions working together to ensure a truly national and inclusive approach to cancer data science. We will be examining trends in cancer incidence across population groups and regions and addressing health inequities by analysing how risk factors affect different demographic and geographic subgroups.  

“The risk models we develop will be used to guide public health policies for prevention and early detection of cancer, with applications extending beyond risk predictions for individuals to optimise resource allocation and maximise population-level impact.” 

Finding those most at risk of cancer

Director of the Cancer Data Driven Detection programme and Professor of Cancer Risk Prediction at the University of Cambridge, Professor Antonis Antoniou, said:  

“Finding people at the highest risk of developing cancer, including those with vague symptoms, is a major challenge. The UK’s strengths in population-scale data resources, combined with advanced analytical tools like AI, offer tremendous opportunities to link disparate datasets and uncover clues that could lead to earlier detection, diagnosis, and prevention of more cancers.”    

“The Cancer Data Driven Detection programme will build the partnerships and infrastructure needed to make data-driven cancer early detection, diagnosis and prevention a routine part of frontline healthcare. Ultimately, it could inform public health policy and empower individuals and their healthcare providers to make shared decisions. By understanding individual cancer risks, people can take proactive steps to stop cancer before it gets worse or even begins in the first place.”  

Head of Prevention and Early Detection Research at Cancer Research UK, Dr David Crosby, said:  

“The single most important thing we can do to beat cancer is to find it earlier, when treatment is more likely to be successful. With half a million cancer cases per year expected in the UK by 2040, we need a major shift towards more accurate diagnosis and detection of early cancer.   

“The Cancer Data Driven Detection programme will link health data sources together and build the powerful new tools doctors need to identify those at highest risk of cancer and prioritise resources towards them.  

“Moving towards a preventative approach to healthcare will not be easy and will take time. Cancer Research UK’s investment in the programme is an investment in the future of cancer care.”    

Lord Vallance, Minister of State for Science, Research and Innovation, said:

 “There are huge opportunities in AI to improve UK healthcare, from scans detecting illnesses earlier to bringing NHS waiting lists down by planning appointments more efficiently, and these will continue to develop.  

 “This investment in harnessing the potential of data to spot those at risk of cancer represents the sort of innovation the Government’s new AI Opportunities Action Plan sets out to realise, so this technology improves lives, while transforming public services and boosting growth.”