Paediatric Solid Tumour Biology and Therapeutics Group

Professor Louis Chesler’s group is investigating the genetic causes for the childhood cancers, neuroblastoma, medulloblastoma and rhabdomyosarcoma. 

Research, projects and publications in this group

Our group's aim is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma.

The goal of our laboratory is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma, three paediatric solid tumours in which high-risk patient cohorts can be defined by alterations in a single oncogene. We focus on the role of the MYCN oncogene, since aberrant expression of MYCNis very significantly associated with high-risk in all three diseases and implies that they may have a common cell-of-origin.

Elucidating the molecular signalling pathways that control expression of the MYCN oncoprotein and targeting these pathways with novel therapeutics is a major goal of the laboratory. We use a variety of innovative preclinical drug development platforms for this purpose.

Technologically, we focus on genetically engineered cancer models incorporating novel imaging (optical and fluorescent) modalities that can be used as markers to monitor disease progression and therapeutic response.

Our group has several key objectives:

  • Mechanistically dissect the role of the MYCN oncogene, and other key oncogenic driver genes in poor-outcome paediatric solid tumours (neuroblastoma, medulloblastoma, rhabdomyosarcoma).
  • Develop novel therapeutics targeting MYCN oncoproteins and other key oncogenic drivers
  • Develop improved genetic cancer models dually useful for studies of oncogenesis and preclinical development of novel therapeutics.
  • Use such models to develop and functionally validate optical imaging modalities useful as surrogate markers of tumour progression in paediatric cancer.

Professor Louis Chesler

Clinical Senior Lecturer/Group Leader:

Paediatric Solid Tumour Biology and Therapeutics Professor Louis Chesler (Profile pic)

Professor Louis Chesler is working to understand the biology of children’s cancers and use that information to discover and develop new personalised approaches to cancer treatment. His work focuses on improving the understanding of the role of the MYCN oncogene.

Researchers in this group

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6124

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3617

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4186

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3501

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4361

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6118

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6021

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6196

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6258

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6121

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4527

Email: [email protected]

Location: Sutton

.

OrcID: 0000-0003-3977-7020

Phone: +44 20 3437 6109

Email: [email protected]

Location: Sutton

I obtained an MSci in Biochemistry from the University of Glasgow in 2018. In October 2018 I joined the labs of Dr Michael Hubank and Professor Andrea Sottoriva to investigate the use of liquid biopsy to monitor clonal frequency and emergence of resistance mutations in paediatric cancers.

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6358

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6131

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

Professor Louis Chesler's group have written 113 publications

Most recent new publication 4/2025

See all their publications

Vacancies in this group

Working in this group

Postdoctoral Training Fellow

  • Chelsea
  • Structural Biology
  • Salary Range: £45,600 - £55,000 per annum
  • Fixed term

Under the leadership of Claudio Alfieri, we are seeking to appoint a Postdoctoral Training Fellow to join the Molecular Mechanisms of Cell Cycle Regulation Group at the Chester Beatty Laboratories, Fulham Road in London. This project aims to investigate the molecular mechanisms of cell cycle regulation by macromolecular complexes involved in cell proliferation decisions, by combining genome engineering, proteomics and in situ structural biology. For general information on Post Doc's at The ICR can be found here. Key Requirements The successful candidate must have a PhD in cellular biochemistry and experience in Cryo-EM and CLEM is desirable. The ICR has a workforce agreement stating that Postdoctoral Training Fellows can only be employed for up to 7 years as PDTF at the ICR, providing total postdoctoral experience (including previous employment at this level elsewhere) does not exceed 7 years Department/Directorate Information: The candidate will work in the Molecular Mechanisms of Cell Cycle Regulation Group within the ICR Division of Structural Biology headed by Prof. Laurence Pearl and Prof. Sebastian Guettler. The division has state-of-the-art facilities for protein expression and biophysics/x-ray crystallography, in particular the Electron Microscopy Facility is equipped with a Glacios 200kV with Falcon 4i detector with Selectris energy filter and the ICR has access to Krios microscopes via eBIC and the LonCEM consortium. We encourage all applicants to access the job pack attached for more detailed information regarding this role. For an informal discussion regarding the role, please contact Claudio Alfieri via Email on [email protected]

Research Group Leader, ICR Clinical Trials and Statistics Unit (ICR-CTSU)

  • Sutton
  • Clinical Trials and Statistics Unit
  • Salary: From £66,092 pa
  • Permanent

Role Summary The Group Leader will lead a component of ICR-CTSU’s portfolio of clinical trials research. The post holder will further develop and grow the portfolio in line with ICR-CTSU’s overall strategy and take responsibility for a number of ongoing trials as well as the development of new trials. We seek an experienced biostatistician with a strong research interest in clinical trials methodology and a passion for direct involvement in the oversight and leadership of academic clinical trials. The successful candidate will work closely with the Director of ICR-CTSU to further enhance the Unit’s internationally recognised strength in clinical trial design, conduct and analysis. The post holder will be expected to make a substantial independent intellectual contribution to clinical trials projects and be proactive in leading and contributing to broad initiatives that enhance the overall effectiveness of ICR-CTSU. The appointee will contribute to the overall scientific life of the ICR including the newly established ICR/Royal Marsden Hospital’s Centre for Trials and Population Data Science, by providing mentorship to more junior colleagues and acting as an academic leader. We seek an individual who will work closely and collaboratively with other faculty/Group Leaders at ICR and with international/national key opinion leaders to extend the breadth and depth of ICR-CTSU’s biologically rich clinical trials portfolio. In partnership with clinical opinion leaders, s/he will generate research funds to conduct and deliver clinical trials research at the international forefront. Presentation at national and international conferences, production of top-quality research outputs and substantial professional contribution to wider clinical trial network bodies are expected. Enthusiasm for team-based science in a collaborative interdisciplinary environment is essential. The appointment will be based on track record and the ability and willingness to engage in team science. The successful appointee will have access to ICR’s successful PhD training programme and core facilities. Key Requirements Higher degree (MSc or PhD) in medical statistics/biostatistics or an allied field (e.g. public health, epidemiology, data science) with relevant work experience Significant experience as a clinical trials, medical or bio-statistician within the academic or commercial sector A desire to apply existing and novel statistical methods to the requirements of a diverse range of statistical problems A broad understanding of cancer research Ability to lead a Clinical Trials Unit based research group As part of your online application, you will be required to upload your full CV which will pre-populate your application form, you will also be asked to attach the following documents and failure to do so will mean your application cannot be considered on this occasion: Lists of major publications, achievements, research grants and distinctions. A PDF of a maximum of five key publications, or other research outputs (e.g. patents) that best demonstrate previous productivity or a single document giving hyperlinks to these outputs. You must also complete the personal statement section of the application form in the format of a cover letter including the names and contact details of three academic referees Department/Directorate Information: Division of Clinical Studies Clinical Trials and Statistics Unit (ICR-CTSU) The ICR-CTSU is a Cancer Research UK-funded, internationally recognised methodologist led clinical trials unit, providing cancer-focused clinical trial research expertise. We lead pioneering, efficient, high-quality, and impactful trials across the phases. Our expertise ranges from experimental medicine early phase studies exploring biological efficacy to trials which may deliver widespread change to routine practice, underpinned by applied methodology to drive forward clinical trial innovation. See our clinical trials Joining as a group leader, you will be given outstanding support to help you to continue to develop in your career. Along with a start-up package of funding, you will also have access to resources to establish your group, including support for recruiting key group members, such as PhD students and postdoctoral researchers. We encourage all applicants to access the job pack attached for more detailed information regarding this role. For an informal discussion regarding the role, please contact Professor Emma Hall ([email protected])

Industrial partnership opportunities with this group

Opportunity: A novel test for predicting future cancer risk in patients with inflammatory bowel disease

Commissioner: Professor Trevor Graham

Recent discoveries from this group

22/01/25

Doctors could soon be able to better predict an individual patient’s chances of getting cancer and offer them personalised detection and prevention strategies, thanks to a new research project co-led by scientists at The Institute of Cancer Research, London. 

Today, Cancer Research UK, the National Institute for Health and Care Research (NIHR) and the Engineering and Physical Sciences Research Council (EPSRC) announced the launch of the Cancer Data-Driven Detection programme.   

The £10million programme, which will be led by the University of Cambridge, aims to access and link vast quantities of data from different sources - including health records, genomics, family history, demographics, and behavioural data. The research teams will then develop advanced statistical models that will help scientists more accurately predict who is most likely to get cancer.  

Alongside this, the programme will develop powerful new tools which use AI to analyse the data and calculate an individual’s risk of cancer throughout their lifetime.   

Building the infrastructure

Over the next five years, the funding will be used to build the infrastructure required to access and link these datasets, train new data scientists, create the algorithms behind the risk models and evaluate the algorithms and AI tools to ensure that they are giving accurate and clinically useful information about cancer risk.  

The data generated from this research could be used to offer more frequent cancer screening sessions or screening at a younger age to those at higher risk. Those at lower risk could be spared unnecessary tests. People identified as higher risk could also fast-tracked for cancer testing when they go to their GP with possible cancer signs or symptoms.  

The Institute of Cancer Research (ICR)’s role in the project will be to harmonise and analyse the combined data from diverse sources across the UK, including a cohort from the long-running Breast Cancer Now Generations study, to capture a wide range of ethnic, geographical, and socioeconomic characteristics for cancer research.  

Analysing trends in cancer incidence

The ICR team, led by Professor Montserrat Garcia-Closas, will work within the Cancer Epidemiology and Prevention Research Unit (CEPRU) she co-directs, a collaboration between ICR and Imperial College London, and other key institutions across the UK. 

Professor Montserrat Garcia-Closas, Group Leader for the Integrative Epidemiology Group at The Institute of Cancer Research, London, said:  

“We are delighted to be part of this UK-wide initiative involving many institutions working together to ensure a truly national and inclusive approach to cancer data science. We will be examining trends in cancer incidence across population groups and regions and addressing health inequities by analysing how risk factors affect different demographic and geographic subgroups.  

“The risk models we develop will be used to guide public health policies for prevention and early detection of cancer, with applications extending beyond risk predictions for individuals to optimise resource allocation and maximise population-level impact.” 

Finding those most at risk of cancer

Director of the Cancer Data Driven Detection programme and Professor of Cancer Risk Prediction at the University of Cambridge, Professor Antonis Antoniou, said:  

“Finding people at the highest risk of developing cancer, including those with vague symptoms, is a major challenge. The UK’s strengths in population-scale data resources, combined with advanced analytical tools like AI, offer tremendous opportunities to link disparate datasets and uncover clues that could lead to earlier detection, diagnosis, and prevention of more cancers.”    

“The Cancer Data Driven Detection programme will build the partnerships and infrastructure needed to make data-driven cancer early detection, diagnosis and prevention a routine part of frontline healthcare. Ultimately, it could inform public health policy and empower individuals and their healthcare providers to make shared decisions. By understanding individual cancer risks, people can take proactive steps to stop cancer before it gets worse or even begins in the first place.”  

Head of Prevention and Early Detection Research at Cancer Research UK, Dr David Crosby, said:  

“The single most important thing we can do to beat cancer is to find it earlier, when treatment is more likely to be successful. With half a million cancer cases per year expected in the UK by 2040, we need a major shift towards more accurate diagnosis and detection of early cancer.   

“The Cancer Data Driven Detection programme will link health data sources together and build the powerful new tools doctors need to identify those at highest risk of cancer and prioritise resources towards them.  

“Moving towards a preventative approach to healthcare will not be easy and will take time. Cancer Research UK’s investment in the programme is an investment in the future of cancer care.”    

Lord Vallance, Minister of State for Science, Research and Innovation, said:

 “There are huge opportunities in AI to improve UK healthcare, from scans detecting illnesses earlier to bringing NHS waiting lists down by planning appointments more efficiently, and these will continue to develop.  

 “This investment in harnessing the potential of data to spot those at risk of cancer represents the sort of innovation the Government’s new AI Opportunities Action Plan sets out to realise, so this technology improves lives, while transforming public services and boosting growth.”