Paediatric Solid Tumour Biology and Therapeutics Group

Professor Louis Chesler’s group is investigating the genetic causes for the childhood cancers, neuroblastoma, medulloblastoma and rhabdomyosarcoma. 

Research, projects and publications in this group

Our group's aim is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma.

The goal of our laboratory is to improve the treatment and survival of children with neuroblastoma, medulloblastoma and rhabdomyosarcoma, three paediatric solid tumours in which high-risk patient cohorts can be defined by alterations in a single oncogene. We focus on the role of the MYCN oncogene, since aberrant expression of MYCNis very significantly associated with high-risk in all three diseases and implies that they may have a common cell-of-origin.

Elucidating the molecular signalling pathways that control expression of the MYCN oncoprotein and targeting these pathways with novel therapeutics is a major goal of the laboratory. We use a variety of innovative preclinical drug development platforms for this purpose.

Technologically, we focus on genetically engineered cancer models incorporating novel imaging (optical and fluorescent) modalities that can be used as markers to monitor disease progression and therapeutic response.

Our group has several key objectives:

  • Mechanistically dissect the role of the MYCN oncogene, and other key oncogenic driver genes in poor-outcome paediatric solid tumours (neuroblastoma, medulloblastoma, rhabdomyosarcoma).
  • Develop novel therapeutics targeting MYCN oncoproteins and other key oncogenic drivers
  • Develop improved genetic cancer models dually useful for studies of oncogenesis and preclinical development of novel therapeutics.
  • Use such models to develop and functionally validate optical imaging modalities useful as surrogate markers of tumour progression in paediatric cancer.

Professor Louis Chesler

Clinical Senior Lecturer/Group Leader:

Paediatric Solid Tumour Biology and Therapeutics Professor Louis Chesler (Profile pic)

Professor Louis Chesler is working to understand the biology of children’s cancers and use that information to discover and develop new personalised approaches to cancer treatment. His work focuses on improving the understanding of the role of the MYCN oncogene.

Researchers in this group

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6124

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3617

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4186

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 3501

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4361

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6118

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6021

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6196

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6258

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6121

Email: [email protected]

Location: Sutton

.

Phone: +44 20 8722 4527

Email: [email protected]

Location: Sutton

.

OrcID: 0000-0003-3977-7020

Phone: +44 20 3437 6109

Email: [email protected]

Location: Sutton

I obtained an MSci in Biochemistry from the University of Glasgow in 2018. In October 2018 I joined the labs of Dr Michael Hubank and Professor Andrea Sottoriva to investigate the use of liquid biopsy to monitor clonal frequency and emergence of resistance mutations in paediatric cancers.

.

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6358

Email: [email protected]

Location: Sutton

.

Phone: +44 20 3437 6131

Email: [email protected]

Location: Sutton

.

Email: [email protected]

Location: Sutton

Professor Louis Chesler's group have written 112 publications

Most recent new publication 1/2025

See all their publications

Vacancies in this group

Working in this group

Postdoctoral Training Fellow - Endocrine Control Mechanisms

  • Chelsea
  • Endocrine Control Mechanisms
  • Salary Range: £45,600 - £55,000 per annum
  • Fixed term

Under the guidance of Professor Cathrin Brisken, we are seeking a highly motivated and ambitious Postdoctoral Training Fellow to combine innovative patient-derived xenograft models and genetic tools to disentangle the role of estrogen and progesterone receptor signaling in breast cancer. The work contributes to gaining more insights into patient-specific hormone dependencies and factors determining them with the aim of personalizing breast cancer therapy and prevention. The successful candidate will be part of a transdisciplinary team of biologists, clinicians and computational scientists and part of close interactions with groups at the ICR, the RMH and King’s College as well Prof. Brisken’s research group at EPFL, Switzerland. About you The successful candidate must have a PhD in biochemistry, pharmacology, cell or molecular biology and demonstrable experience in planning and designing experiments. Ability to write efficient computer code would is desirable. Candidates who are nearing completion of their PhD may apply, but confirmation on awarded PhD is required within 6 months of employment. The ICR has a workforce agreement stating that Postdoctoral Training Fellows can only be employed for up to 7 years as a PTDF at the ICR ( this includes experience gained at PDTF level prior to joining the ICR). For general information on Postdocs at The ICR, more information can be found here. Research Group Information Under the leadership of Professor Cathrin Brisken, The Endocrine Control Mechanisms group are using intraductal mammary gland implantation, and ex vivo studies using breast cancers expanded via intraductal implantation. We also use transcriptomic and proteomic studies to investigate therapeutics for breast cancer patients and improve the development of novel treatment options for them. Directorate Information The Breast Cancer Now Toby Robins Research Centre, within the Division of Breast Cancer Research of the Institute of Cancer Research which is the first centre in the UK entirely devoted to breast cancer research. Our goal is to advance research into the causes, diagnosis and treatment of breast cancer. It is located in state-of-the-art laboratory space, with excellent core facilities and is funded through a long term renewable programme grant from Breast Cancer Now. The Centre is Directed by Clinician Scientist Professor Andrew Tutt, Professor Chris Lord is Deputy Director of the Centre. What we offer A dynamic and supportive research environment Access to state-of-the-art facilities and professional development opportunities Collaboration with leading researchers in the field Competitive salary and pension We encourage all applicants to access the job pack attached for more detailed information regarding this role.

Postdoctoral Training Fellow

  • Chelsea
  • Structural Biology
  • Salary Range: £38,700 - £45,500 per annum
  • Fixed term

Under the leadership of Claudio Alfieri, we are seeking to appoint a Postdoctoral Training Fellow to join the Molecular Mechanisms of Cell Cycle Regulation Group at the Chester Beatty Laboratories, Fulham Road in London. This project aims to investigate the molecular mechanisms of cell cycle regulation by macromolecular complexes involved in cell proliferation decisions, by combining genome engineering, proteomics and in situ structural biology. For general information on Post Doc's at The ICR can be found here. Key Requirements The successful candidate must have a PhD in cellular biochemistry and experience in Cryo-EM and CLEM is desirable. The ICR has a workforce agreement stating that Postdoctoral Training Fellows can only be employed for up to 7 years as PDTF at the ICR, providing total postdoctoral experience (including previous employment at this level elsewhere) does not exceed 10 years Department/Directorate Information: The candidate will work in the Molecular Mechanisms of Cell Cycle Regulation Group within the ICR Division of Structural Biology headed by Prof. Laurence Pearl and Prof. Sebastian Guettler. The division has state-of-the-art facilities for protein expression and biophysics/x-ray crystallography, in particular the Electron Microscopy Facility is equipped with a Glacios 200kV with Falcon 4i detector with Selectris energy filter and the ICR has access to Krios microscopes via eBIC and the LonCEM consortium. We encourage all applicants to access the job pack attached for more detailed information regarding this role. For an informal discussion regarding the role, please contact Claudio Alfieri via Email on [email protected]

Industrial partnership opportunities with this group

Opportunity: A novel test for predicting future cancer risk in patients with inflammatory bowel disease

Commissioner: Professor Trevor Graham

Recent discoveries from this group

Mini tumours grown from a bowel cancer

30/03/25

Scientists from The Institute of Cancer Research, London, are part of a team of international researchers who have secured £5.5million in funding to find smarter, kinder treatments for people living with bowel cancer.
A high magnification image of ovarian clear cell carcinoma (photo: Nephron)

26/03/25

Scientists at The Institute of Cancer Research, London, have identified a gene that affects how ovarian clear cell carcinoma (OCCC) could respond to a new class of drug called ATR inhibitors.
Picture of metastatic neuroblastoma cells under a microscope

24/03/25

New research has provided insight into the biological mechanisms that may contribute to poor outcomes in certain cases of neuroblastoma – a cancer that develops in nerve tissue and primarily affects children.
Image courtesy of istockphoto and Plinio R Hurtado

20/03/25

Scientists have developed a revolutionary AI ‘fingerprint’ technology that can accurately show how cancer cells respond to new drugs, by simply observing changes to their shape.