Dr Beatrice Howard
Staff Scientist:
Biography and research overview
Dr Howard’s group investigates how the breast initially forms and how different types of immature breast cells and embryonic factors have an impact on the behaviour of breast cancer cells. Embryonic breast epithelial cells are a unique cell population comprised of undifferentiated and highly plastic progenitor cells that ultimately give rise to all other postnatal breast epithelial cells. Dr Howard investigates the cell communications between epithelial and stromal cells that form during embryonic breast development. Signalling between these cell populations promotes mammary differentiation and contributes both to postnatal breast development and to the development of breast cancer.
The current focus of this research programme is to understand the interactions between mammary cells and their microenvironments, and how these interactions play a role both in the formation and differentiation of immature breast cells and in the development of breast cancers. The overall goal is to identify distinct roles for embryonic factors in tumour initiation and progression. This may allow markers to be selected that can classify breast cancers in new ways and open new possibilities for treatment of tumours that display embryonic features.
Types of Publications
Journal articles
The Neuregulin gene family encodes EGF-containing ligands which mediate their effects by binding to the ERBB receptor tyrosine kinases, a signalling network with important roles in both mammary gland development and breast cancer. Neuregulin3 (NRG3), a ligand for ERBB4, promotes early mammary morphogenesis and acts during specification of the mammary placode, an aggregate of epithelial cells that forms during mid-embryogenesis. Recent studies have shown that NRG3 can alter the cell fate of other epidermal progenitor populations when NRG3 is mis-expressed throughout the basal layer of the developing epidermis with the K14 promoter. Here evidence for a key function for NRG3 in promoting early mammary morphogenesis and the implication for the role of NRG3 in breast cancer and establishment of the mammary lineage are discussed.
BACKGROUND: The Neuregulin family of ligands and their receptors, the Erbb tyrosine kinases, have important roles in epidermal and mammary gland development as well as during carcinogenesis. Previously, we demonstrated that Neuregulin3 (Nrg3) is a specification signal for mammary placode formation in mice. Nrg3 is a growth factor, which binds and activates Erbb4, a receptor tyrosine kinase that regulates cell proliferation and differentiation. To understand the role of Neuregulin3 in epidermal morphogenesis, we have developed a transgenic mouse model that expresses Nrg3 throughout the basal layer (progenitor/stem cell compartment) of mouse epidermis and the outer root sheath of developing hair follicles. RESULTS: Transgenic females formed supernumerary nipples and mammary glands along and adjacent to the mammary line providing strong evidence that Nrg3 has a role in the initiation of mammary placodes along the body axis. In addition, alterations in morphogenesis and differentiation of other epidermal appendages were observed, including the hair follicles. The transgenic epidermis is hyperplastic with excessive sebaceous differentiation and shows striking similarities to mouse models in which c-Myc is activated in the basal layer including decreased expression levels of the adhesion receptors, alpha6-integrin and beta1-integrin. CONCLUSION: These results indicate that the epidermis is sensitive to Nrg3 signaling, and that this growth factor can regulate cell fate of pluripotent epidermal cell populations including that of the mammary gland. Nrg3 appears to act, in part, by inducing c-Myc, altering the proliferation and adhesion properties of the basal epidermis, and may promote exit from the stem cell compartment. The results we describe provide significant insight into how growth factors, such as Nrg3, regulate epidermal homeostasis by influencing the balance between stem cell renewal, lineage selection and differentiation.
The mouse scaramanga (ska) mutation impairs mammary gland development such that both abrogation and stimulation of gland formation occurs. We used positional cloning to narrow the interval containing scaramanga (ska) to a 75.6-kb interval containing the distal part of the Neuregulin3 (Nrg3) gene. Within this region the only sequence difference between ska and wild-type mice is in a microsatellite repeat within intron 7. This alteration correlates with variations in Nrg3 expression profiles both at the whole embryo level and locally in the presumptive mammary region in ska mice. Localized expression of Nrg3 and its receptor, Erbb4, in the presumptive mammary region around the future bud site prior to morphological appearance of buds and the expression of bud epithelial markers further support an inductive role. Finally, Neuregulin3 (Nrg3)-soaked beads can induce expression of the early bud marker Lef1 in mouse embryo explant cultures, and epithelial bud formation can be observed histologically, suggesting that initiation of mammary bud development occurs. Taken together, these results indicate that a Neuregulin signaling pathway is involved in specification of mammary gland morphogenesis and support the long-held view that mesenchymal signal(s) are responsible for mammary gland inductive/initiating events.
Interneuron dysfunction is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia and autism. Some of these disorders arise during brain formation, at the time of interneuron specification, migration and synapse formation. Here, we showed that the signalling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the migration of interneurons towards and within the cerebral cortex by modulating the motogenic ErbB4/phosphatidylinositol (PI) 3-kinase signalling pathway. We first identified ErbB4 as a novel p35/Cdk5 kinase substrate. We then demonstrated that Cdk5-dependent ErbB4/PI3-kinase signalling cascade regulates interneuron leading process dynamics (morphology) and directionality. Finally, we showed that lack of Cdk5 activity in p35 mutants leads to permanent reduction in the final number of a subtype of interneurons that may affect formation of neuronal circuits, thus increasing the risk of neurodevelopmental disorders. Together, these findings identify Cdk5 as a crucial signalling factor in cortical interneuron development.
Embryonic explant culture is a powerful technique to observe tissue morphogenesis ex vivo, and is particularly useful for monitoring embryonic mammary gland development. It has been established that mammary cell lineage specification occurs during embryogenesis, although much remains to be elucidated with respect to how this occurs. During mammary specification, mammary progenitor cells are formed. Embryonic mammary development can proceed and be monitored in embryonic explant culture. Studies using explant culture will greatly enhance our understanding of the cellular mechanisms that regulate embryonic mammary primordial development and mammary progenitor cell specification. We present a protocol for culturing explants from mid-gestation mouse embryos so that morphogenetic processes and mammary epithelial progenitor cells can be studied during embryonic mammary development ex vivo.
Proteomic analysis of extracellular matrix (ECM) and ECM-associated proteins, collectively known as the matrisome, is a challenging task due to the inherent complexity and insolubility of these proteins. Here we present sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH MS) as a tool for the quantitative analysis of matrisomal proteins in both non-enriched and ECM enriched tissue without the need for prior fractionation. Utilising a spectral library containing 201 matrisomal proteins, we compared the performance and reproducibility of SWATH MS over conventional data-dependent analysis mass spectrometry (DDA MS) in unfractionated murine lung and liver. SWATH MS conferred a 15-20% increase in reproducible peptide identification across replicate experiments in both tissue types and identified 54% more matrisomal proteins in the liver versus DDA MS. We further use SWATH MS to evaluate the quantitative changes in matrisome content that accompanies ECM enrichment. Our data shows that ECM enrichment led to a systematic increase in core matrisomal proteins but resulted in significant losses in matrisome-associated proteins including the cathepsins and proteins of the S100 family. Our proof-of-principle study demonstrates the utility of SWATH MS as a versatile tool for in-depth characterisation of the matrisome in unfractionated and non-enriched tissues. SIGNIFICANCE: The matrisome is a complex network of extracellular matrix (ECM) and ECM-associated proteins that provides scaffolding function to tissues and plays important roles in the regulation of fundamental cellular processes. However, due to its inherent complexity and insolubility, proteomic studies of the matrisome typically require the application of enrichment workflows prior to MS analysis. Such enrichment strategies often lead to losses in soluble matrisome-associated components. In this study, we present sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH MS) as a tool for the quantitative analysis of matrisomal proteins. We show that SWATH MS provides a more reproducible coverage of the matrisome compared to data-dependent analysis (DDA) MS. We also demonstrate that SWATH MS is capable of accurate quantification of matrisomal proteins without prior ECM enrichment and fractionation, which may simplify sample handling workflows and avoid losses in matrisome-associated proteins commonly linked to ECM enrichment.
Embryonic mammary cells are a unique population comprised of undifferentiated, highly plastic progenitor cells that create normal mammary tissues. The mammary gland continues to develop after birth from descendants of embryonic mammary cells. Here, we establish cell lines from mouse mammary organs, immediately after they formed during prenatal development, to facilitate studies of primitive mammary cells, which are difficult to isolate in sufficient quantities for use in functional experiments. We show that some lines can be induced to secrete milk, a distinguishing feature of mammary epithelial cells. Targeted deletion of Sox9, from one clone, decreases the ability to respond to lactogenic stimuli, consistent with a previously identified role for Sox9 in regulating luminal progenitor function. Sox9 ablation also leads to alterations in 3D morphology and downregulation of Zeb1, a key epithelial-mesenchymal transition regulator. Prenatal mammary cell lines are an invaluable resource to study regulation of mammary progenitor cell biology and development.
Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer.
The matrisome is a complex and heterogeneous collection of extracellular matrix (ECM) and ECM-associated proteins that play important roles in tissue development and homeostasis. While several strategies for matrisome enrichment have been developed, it is currently unknown how the performance of these different methodologies compares in the proteomic identification of matrisome components across multiple tissue types. In the present study, we perform a comparative proteomic assessment of two widely used decellularisation protocols and two extraction methods to characterise the matrisome in four murine organs (heart, mammary gland, lung and liver). We undertook a systematic evaluation of the performance of the individual methods on protein yield, matrisome enrichment capability and the ability to isolate core matrisome and matrisome-associated components. Our data find that sodium dodecyl sulphate (SDS) decellularisation leads to the highest matrisome enrichment efficiency, while the extraction protocol that comprises chemical and trypsin digestion of the ECM fraction consistently identifies the highest number of matrisomal proteins across all types of tissue examined. Matrisome enrichment had a clear benefit over non-enriched tissue for the comprehensive identification of matrisomal components in murine liver and heart. Strikingly, we find that all four matrisome enrichment methods led to significant losses in the soluble matrisome-associated proteins across all organs. Our findings highlight the multiple factors (including tissue type, matrisome class of interest and desired enrichment purity) that influence the choice of enrichment methodology, and we anticipate that these data will serve as a useful guide for the design of future proteomic studies of the matrisome.
Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals.
The stroma, which is composed of supporting cells and connective tissue, comprises a large component of the local microenvironment of many epithelial cell types, and influences several fundamental aspects of cell behaviour through both tissue interactions and niche regulation. The significance of the stroma in development and disease has been increasingly recognised. Whereas normal stroma is essential for various developmental processes during vertebrate organogenesis, it can be deregulated and become abnormal, which in turn can initiate or promote a disease process, including cancer. The mouse mammary gland has emerged in recent years as an excellent model system for understanding stromal function in both developmental and cancer biology. Here, we take a systematic approach and focus on the dynamic interactions that the stroma engages with the epithelium during mammary specification, cell differentiation, and branching morphogenesis of both the embryonic and postnatal development of the mammary gland. Similar stromal-epithelial interactions underlie the aetiology of breast cancer, making targeting the cancer stroma an increasingly important and promising therapeutic strategy to pursue for breast cancer treatment.
INTRODUCTION: Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. METHODS: We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. RESULTS: Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell proliferation and cell survival. CONCLUSIONS: Specific subsets of embryonic mammary genes, rather than the entire embryonic development transcriptomic program, are activated in tumorigenesis. Genes involved in embryonic mammary development are consistently upregulated in some breast cancers and warrant further investigation, potentially in drug-discovery research endeavors.
Whole-mount immunofluorescent staining facilitates the profiling of protein expression patterns within diverse and complex tissues. Thanks to the application of antibodies on whole mounted instead of sectioned specimens, this technique has many advantages with respect to the preservation of biological and pathological features of specimens when compared to conventional immunohistological methods. Here, we describe a protocol and optimal conditions of whole-mount immunofluorescence for studying the formation of mammary primordia. We also show an example three-dimensional reconstruction of a mammary primordium based on z-stacked images of a whole-mount stained specimen using confocal microscopy and image analysis software.
The mammary primordium is comprised of an aggregate of immature, undifferentiated mammary epithelial cells and its associated mammary mesenchyme, a specialised tissue which harbours mammary-inductive capacity. The mammary primordium forms during embryogenesis as a result of inductive interactions between its two component tissues, the mammary mesenchyme and epithelium. These two tissues constitute a signalling centre that directs the formation of the mammary gland through a series of reciprocal mesenchymal-epithelial interactions. A rudimentary mammary ductal tree and stroma is formed prior to birth as a result of these interactions. The subsequent mammary outgrowths that arise upon hormonal stimulation during puberty originate from this rudimentary tissue. The initial appearance of the embryonic mammary primordium during embryogenesis represents the earliest morphological evidence of commitment to the mammary lineage. Classic tissue recombination studies of mouse mammary primordial cells have demonstrated that the epithelial cells are already functionally determined as mammary at the embryonic mammary bud stage. Recent studies have determined the molecular identity of the embryonic mammary cells by transcriptomic profiling and these have provided new insights into signalling components that mediate early embryonic mammary inductive signalling and lineage commitment. This review highlights what is currently known about the morphogenesis, function, and behaviour of embryonic mammary cells and examine current knowledge of the genetics underlying mammary cell fate and establishment of the mammary lineage during embryogenesis.
Here, we show that SOX11, an embryonic mammary marker that is normally silent in postnatal breast cells, is expressed in many oestrogen receptor-negative preinvasive ductal carcinoma in situ (DCIS) lesions. Mature mammary epithelial cells engineered to express SOX11 showed alterations in progenitor cell populations, including an expanded basal-like population with increased aldehyde dehydrogenase (ALDH) activity, and increased mammosphere-forming capacity. DCIS.com cells engineered to express SOX11 showed increased ALDH activity, which is a feature of cancer stem cells. The CD44+/CD24-/ALDH+ cell population was increased in DCIS.com cells that expressed SOX11. Upregulating SOX11 expression in DCIS.com cells led to increased invasive growth both in vitro and when they were injected intraductally in a mouse model of DCIS that recapitulates human disease. Invasive lesions formed sooner and tumour growth was augmented in vivo, suggesting that SOX11 contributes to the progression of DCIS to invasive breast cancer. We identified potential downstream effectors of SOX11 during both microinvasive and invasive tumour growth stages, including several with established links to regulation of progenitor cell function and prenatal developmental growth. Our findings suggest that SOX11 is a potential biomarker for DCIS lesions containing cells harbouring distinct biological features that are likely to progress to invasive breast cancer. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in multiple model organisms including the mouse. Here, we present a comprehensive mouse reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597 proteins (62.2% of the mouse proteome) by SWATH-MS. We exploit MouseRefSWATH to develop an analytical pipeline for species-specific deconvolution of proteomic alterations in human tumour xenografts (XenoSWATH). This method overcomes the challenge of high sequence similarity between mouse and human proteins, facilitating the study of host microenvironment-tumour interactions from 'bulk tumour' measurements. We apply the XenoSWATH pipeline to characterize an intraductal xenograft model of breast ductal carcinoma <i>in situ</i> and uncover complex regulation consistent with stromal reprogramming, where the modulation of cell migration pathways is not restricted to tumour cells but also operates in the mouse stroma upon progression to invasive disease. MouseRefSWATH and XenoSWATH open new opportunities for in-depth and reproducible proteomic assessment to address wide-ranging biological questions involving this important model organism.
SOX11 is an embryonic mammary epithelial marker that is normally silenced prior to birth. High <i>SOX11</i> levels in breast tumours are significantly associated with distant metastasis and poor outcome in breast cancer patients. Here, we show that SOX11 confers distinct features to ER-negative DCIS.com breast cancer cells, leading to populations enriched with highly plastic hybrid epithelial/mesenchymal cells, which display invasive features and alterations in metastatic tropism when xenografted into mice. We found that SOX11+DCIS tumour cells metastasize to brain and bone at greater frequency and to lungs at lower frequency compared to cells with lower SOX11 levels. High levels of SOX11 leads to the expression of markers associated with mesenchymal state and embryonic cellular phenotypes. Our results suggest that SOX11 may be a potential biomarker for breast tumours with elevated risk of developing metastases and may require more aggressive therapies.
Little is known about the role of Sox11 in the regulation of mammary progenitor cells. Sox11 is expressed by mammary bud epithelial cells during embryonic mammary gland development and is not detected in mammary epithelial cells after birth. As Sox11 is an oncofetal gene, we investigated the effects of reducing Sox11 levels in embryonic mammary progenitor cells and found that Sox11 regulates proliferative state, stem cell activity and lineage marker expression. We also investigated the effect of reducing Sox11 levels in two transplantable Brca1-deficient oestrogen receptor-negative mouse mammary tumour cell lines, to assess whether Sox11 regulates similar functions in tumour progenitor cells. When Sox11 levels were reduced in one Brca1-deficient mammary tumour cell line that expressed both epithelial and mesenchymal markers, similar effects on proliferation, stem cell activity and expression of lineage markers to those seen in the embryonic mammary progenitor cells were observed. Orthotopic grafting of mammary tumour cells with reduced Sox11 levels led to alterations in tumour-initiating capacity, latency, expression of lineage markers and metastatic burden. Our results support a model in which tumours expressing higher levels of Sox11 have more stem and tumour-initiating cells, and are less proliferative, whereas tumours expressing lower levels of Sox11 become more proliferative and capable of morphogenetic/metastatic growth, similar to what occurs during embryonic mammary developmental progression.
The thirteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) Laboratories Annual Workshop took place on the 28-30 April 2022 in Weggis, Switzerland and focused on methods in mammary gland biology and breast cancer. Sixty scientists participated in the ENBDC annual workshop which had not been held in person since 2019 due to the global COVID-19 pandemic. Topics spanned the mammary gland biology field, ranging from lactation biology and embryonic development, single cell sequencing of the human breast, and stunning cutting-edge imaging of the mouse mammary gland and human breast as well as breast cancer research topics including invasive progression of the pre-invasive DCIS stage, metabolic determinants of endocrine therapy resistance, models for lobular breast cancer, and how mutational landscapes of normal breast during age and pregnancy determine cancer risk. The latest findings from participating researchers were presented through oral presentations and poster sessions and included plenty of unpublished work.
Book chapters
The mammary intraductal xenografting technique has been established to inject cells or other substances directly into the mammary ducts of female mice. Using this refined xenografting method provides the possibility of mimicking the normal microenvironment of preinvasive breast lesions including, ductal carcinoma in situ (DCIS), to study of the progression of DCIS to invasive breast cancer in a more relevant manner than with other mammary xenografting methods. Xenografting into the mammary fat pad delivers cells directly into the stroma and bypasses the occurrence of invasive transition, during which cells invade through the basement membrane. Either breast cancer cell lines or patient-derived breast cancer cells can be injected into the mammary duct using this protocol to model breast cancer progression. This protocol will cover the procedures required to perform this technique.