Kentistou, K.A.
Kaisinger, L.R.
Stankovic, S.
Vaudel, M.
Mendes de Oliveira, E.
Messina, A.
Walters, R.G.
Liu, X.
Busch, A.S.
Helgason, H.
Thompson, D.J.
Santoni, F.
Petricek, K.M.
Zouaghi, Y.
Huang-Doran, I.
Gudbjartsson, D.F.
Bratland, E.
Lin, K.
Gardner, E.J.
Zhao, Y.
Jia, R.Y.
Terao, C.
Riggan, M.J.
Bolla, M.K.
Yazdanpanah, M.
Yazdanpanah, N.
Bradfield, J.P.
Broer, L.
Campbell, A.
Chasman, D.I.
Cousminer, D.L.
Franceschini, N.
Franke, L.H.
Girotto, G.
He, C.
Järvelin, M.-.
Joshi, P.K.
Kamatani, Y.
Karlsson, R.
Luan, J.
Lunetta, K.L.
Mägi, R.
Mangino, M.
Medland, S.E.
Meisinger, C.
Noordam, R.
Nutile, T.
Concas, M.P.
Polašek, O.
Porcu, E.
Ring, S.M.
Sala, C.
Smith, A.V.
Tanaka, T.
van der Most, P.J.
Vitart, V.
Wang, C.A.
Willemsen, G.
Zygmunt, M.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Antoniou, A.C.
Auer, P.L.
Barnes, C.L.
Beckmann, M.W.
Berrington de Gonzalez, A.
Bogdanova, N.V.
Bojesen, S.E.
Brenner, H.
Buring, J.E.
Canzian, F.
Chang-Claude, J.
Couch, F.J.
Cox, A.
Crisponi, L.
Czene, K.
Daly, M.B.
Demerath, E.W.
Dennis, J.
Devilee, P.
De Vivo, I.
Dörk, T.
Dunning, A.M.
Dwek, M.
Eriksson, J.G.
Fasching, P.A.
Fernandez-Rhodes, L.
Ferreli, L.
Fletcher, O.
Gago-Dominguez, M.
García-Closas, M.
García-Sáenz, J.A.
González-Neira, A.
Grallert, H.
Guénel, P.
Haiman, C.A.
Hall, P.
Hamann, U.
Hakonarson, H.
Hart, R.J.
Hickey, M.
Hooning, M.J.
Hoppe, R.
Hopper, J.L.
Hottenga, J.-.
Hu, F.B.
Huebner, H.
Hunter, D.J.
ABCTB Investigators,
Jernström, H.
John, E.M.
Karasik, D.
Khusnutdinova, E.K.
Kristensen, V.N.
Lacey, J.V.
Lambrechts, D.
Launer, L.J.
Lind, P.A.
Lindblom, A.
Magnusson, P.K.
Mannermaa, A.
McCarthy, M.I.
Meitinger, T.
Menni, C.
Michailidou, K.
Millwood, I.Y.
Milne, R.L.
Montgomery, G.W.
Nevanlinna, H.
Nolte, I.M.
Nyholt, D.R.
Obi, N.
O'Brien, K.M.
Offit, K.
Oldehinkel, A.J.
Ostrowski, S.R.
Palotie, A.
Pedersen, O.B.
Peters, A.
Pianigiani, G.
Plaseska-Karanfilska, D.
Pouta, A.
Pozarickij, A.
Radice, P.
Rennert, G.
Rosendaal, F.R.
Ruggiero, D.
Saloustros, E.
Sandler, D.P.
Schipf, S.
Schmidt, C.O.
Schmidt, M.K.
Small, K.
Spedicati, B.
Stampfer, M.
Stone, J.
Tamimi, R.M.
Teras, L.R.
Tikkanen, E.
Turman, C.
Vachon, C.M.
Wang, Q.
Winqvist, R.
Wolk, A.
Zemel, B.S.
Zheng, W.
van Dijk, K.W.
Alizadeh, B.Z.
Bandinelli, S.
Boerwinkle, E.
Boomsma, D.I.
Ciullo, M.
Chenevix-Trench, G.
Cucca, F.
Esko, T.
Gieger, C.
Grant, S.F.
Gudnason, V.
Hayward, C.
Kolčić, I.
Kraft, P.
Lawlor, D.A.
Martin, N.G.
Nøhr, E.A.
Pedersen, N.L.
Pennell, C.E.
Ridker, P.M.
Robino, A.
Snieder, H.
Sovio, U.
Spector, T.D.
Stöckl, D.
Sudlow, C.
Timpson, N.J.
Toniolo, D.
Uitterlinden, A.
Ulivi, S.
Völzke, H.
Wareham, N.J.
Widen, E.
Wilson, J.F.
Lifelines Cohort Study,
Danish Blood Donor Study,
Ovarian Cancer Association Consortium,
Breast Cancer Association Consortium,
Biobank Japan Project,
China Kadoorie Biobank Collaborative Group,
Pharoah, P.D.
Li, L.
Easton, D.F.
Njølstad, P.R.
Sulem, P.
Murabito, J.M.
Murray, A.
Manousaki, D.
Juul, A.
Erikstrup, C.
Stefansson, K.
Horikoshi, M.
Chen, Z.
Farooqi, I.S.
Pitteloud, N.
Johansson, S.
Day, F.R.
Perry, J.R.
Ong, K.K.
(2024). Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat genet,
Vol.56
(7),
pp. 1397-1411.
show abstract
full text
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease..
Timmins, I.R.
Jones, M.E.
O'Brien, K.M.
Adami, H.-.
Aune, D.
Baglietto, L.
Bertrand, K.A.
Brantley, K.D.
Chen, Y.
Clague DeHart, J.
Clendenen, T.V.
Dossus, L.
Eliassen, A.H.
Fletcher, O.
Fournier, A.
Håkansson, N.
Hankinson, S.E.
Houlston, R.S.
Joshu, C.E.
Kirsh, V.A.
Kitahara, C.M.
Koh, W.-.
Linet, M.S.
Park, H.L.
Lynch, B.M.
May, A.M.
Mellemkjær, L.
Milne, R.L.
Palmer, J.R.
Ricceri, F.
Rohan, T.E.
Ruddy, K.J.
Sánchez, M.-.
Shu, X.-.
Smith-Byrne, K.
Steindorf, K.
Sund, M.
Vachon, C.M.
Vatten, L.J.
Visvanathan, K.
Weiderpass, E.
Willett, W.C.
Wolk, A.
Yuan, J.-.
Zheng, W.
Nichols, H.B.
Sandler, D.P.
Swerdlow, A.J.
Schoemaker, M.J.
(2024). International Pooled Analysis of Leisure-Time Physical Activity and Premenopausal Breast Cancer in Women From 19 Cohorts. J clin oncol,
Vol.42
(8),
pp. 927-939.
show abstract
PURPOSE: There is strong evidence that leisure-time physical activity is protective against postmenopausal breast cancer risk but the association with premenopausal breast cancer is less clear. The purpose of this study was to examine the association of physical activity with the risk of developing premenopausal breast cancer. METHODS: We pooled individual-level data on self-reported leisure-time physical activity across 19 cohort studies comprising 547,601 premenopausal women, with 10,231 incident cases of breast cancer. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% CIs for associations of leisure-time physical activity with breast cancer incidence. HRs for high versus low levels of activity were based on a comparison of risk at the 90th versus 10th percentiles of activity. We assessed the linearity of the relationship and examined subtype-specific associations and effect modification across strata of breast cancer risk factors, including adiposity. RESULTS: Over a median 11.5 years of follow-up (IQR, 8.0-16.1 years), high versus low levels of leisure-time physical activity were associated with a 6% (HR, 0.94 [95% CI, 0.89 to 0.99]) and a 10% (HR, 0.90 [95% CI, 0.85 to 0.95]) reduction in breast cancer risk, before and after adjustment for BMI, respectively. Tests of nonlinearity suggested an approximately linear relationship (Pnonlinearity = .94). The inverse association was particularly strong for human epidermal growth factor receptor 2-enriched breast cancer (HR, 0.57 [95% CI, 0.39 to 0.84]; Phet = .07). Associations did not vary significantly across strata of breast cancer risk factors, including subgroups of adiposity. CONCLUSION: This large, pooled analysis of cohort studies adds to evidence that engagement in higher levels of leisure-time physical activity may lead to reduced premenopausal breast cancer risk..
Middha, P.
Wang, X.
Behrens, S.
Bolla, M.K.
Wang, Q.
Dennis, J.
Michailidou, K.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Aronson, K.J.
Auer, P.L.
Augustinsson, A.
Baert, T.
Freeman, L.E.
Becher, H.
Beckmann, M.W.
Benitez, J.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Brooks-Wilson, A.
Campa, D.
Canzian, F.
Carracedo, A.
Castelao, J.E.
Chanock, S.J.
Chenevix-Trench, G.
CTS Consortium,
Cordina-Duverger, E.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Dossus, L.
Dugué, P.-.
Eliassen, A.H.
Eriksson, M.
Evans, D.G.
Fasching, P.A.
Figueroa, J.D.
Fletcher, O.
Flyger, H.
Gabrielson, M.
Gago-Dominguez, M.
Giles, G.G.
González-Neira, A.
Grassmann, F.
Grundy, A.
Guénel, P.
Haiman, C.A.
Håkansson, N.
Hall, P.
Hamann, U.
Hankinson, S.E.
Harkness, E.F.
Holleczek, B.
Hoppe, R.
Hopper, J.L.
Houlston, R.S.
Howell, A.
Hunter, D.J.
Ingvar, C.
ABCTB Investigators,
kConFab Investigators,
Isaksson, K.
Jernström, H.
John, E.M.
Jones, M.E.
Kaaks, R.
Keeman, R.
Kitahara, C.M.
Ko, Y.-.
Koutros, S.
Kurian, A.W.
Lacey, J.V.
Lambrechts, D.
Larson, N.L.
Larsson, S.
Le Marchand, L.
Lejbkowicz, F.
Li, S.
Linet, M.
Lissowska, J.
Martinez, M.E.
Maurer, T.
Mulligan, A.M.
Mulot, C.
Murphy, R.A.
Newman, W.G.
Nielsen, S.F.
Nordestgaard, B.G.
Norman, A.
O'Brien, K.M.
Olson, J.E.
Patel, A.V.
Prentice, R.
Rees-Punia, E.
Rennert, G.
Rhenius, V.
Ruddy, K.J.
Sandler, D.P.
Scott, C.G.
Shah, M.
Shu, X.-.
Smeets, A.
Southey, M.C.
Stone, J.
Tamimi, R.M.
Taylor, J.A.
Teras, L.R.
Tomczyk, K.
Troester, M.A.
Truong, T.
Vachon, C.M.
Wang, S.S.
Weinberg, C.R.
Wildiers, H.
Willett, W.
Winham, S.J.
Wolk, A.
Yang, X.R.
Zamora, M.P.
Zheng, W.
Ziogas, A.
Dunning, A.M.
Pharoah, P.D.
García-Closas, M.
Schmidt, M.K.
Kraft, P.
Milne, R.L.
Lindström, S.
Easton, D.F.
Chang-Claude, J.
(2023). A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry. Breast cancer res,
Vol.25
(1),
p. 93.
show abstract
BACKGROUND: Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS: Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS: Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS: Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer..
Mueller, S.H.
Lai, A.G.
Valkovskaya, M.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Lush, M.
Abu-Ful, Z.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Aronson, K.J.
Augustinsson, A.
Baert, T.
Freeman, L.E.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, S.E.
Bonanni, B.
Brenner, H.
Brucker, S.Y.
Buys, S.S.
Castelao, J.E.
Chan, T.L.
Chang-Claude, J.
Chanock, S.J.
Choi, J.-.
Chung, W.K.
NBCS Collaborators,
Colonna, S.V.
CTS Consortium,
Cornelissen, S.
Couch, F.J.
Czene, K.
Daly, M.B.
Devilee, P.
Dörk, T.
Dossus, L.
Dwek, M.
Eccles, D.M.
Ekici, A.B.
Eliassen, A.H.
Engel, C.
Evans, D.G.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Gago-Dominguez, M.
Gao, Y.-.
García-Closas, M.
García-Sáenz, J.A.
Genkinger, J.
Gentry-Maharaj, A.
Grassmann, F.
Guénel, P.
Gündert, M.
Haeberle, L.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hall, P.
Harkness, E.F.
Harrington, P.A.
Hartikainen, J.M.
Hartman, M.
Hein, A.
Ho, W.-.
Hooning, M.J.
Hoppe, R.
Hopper, J.L.
Houlston, R.S.
Howell, A.
Hunter, D.J.
Huo, D.
ABCTB Investigators,
Ito, H.
Iwasaki, M.
Jakubowska, A.
Janni, W.
John, E.M.
Jones, M.E.
Jung, A.
Kaaks, R.
Kang, D.
Khusnutdinova, E.K.
Kim, S.-.
Kitahara, C.M.
Koutros, S.
Kraft, P.
Kristensen, V.N.
Kubelka-Sabit, K.
Kurian, A.W.
Kwong, A.
Lacey, J.V.
Lambrechts, D.
Le Marchand, L.
Li, J.
Linet, M.
Lo, W.-.
Long, J.
Lophatananon, A.
Mannermaa, A.
Manoochehri, M.
Margolin, S.
Matsuo, K.
Mavroudis, D.
Menon, U.
Muir, K.
Murphy, R.A.
Nevanlinna, H.
Newman, W.G.
Niederacher, D.
O'Brien, K.M.
Obi, N.
Offit, K.
Olopade, O.I.
Olshan, A.F.
Olsson, H.
Park, S.K.
Patel, A.V.
Patel, A.
Perou, C.M.
Peto, J.
Pharoah, P.D.
Plaseska-Karanfilska, D.
Presneau, N.
Rack, B.
Radice, P.
Ramachandran, D.
Rashid, M.U.
Rennert, G.
Romero, A.
Ruddy, K.J.
Ruebner, M.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Schneider, M.O.
Scott, C.
Shah, M.
Sharma, P.
Shen, C.-.
Shu, X.-.
Simard, J.
Surowy, H.
Tamimi, R.M.
Tapper, W.J.
Taylor, J.A.
Teo, S.H.
Teras, L.R.
Toland, A.E.
Tollenaar, R.A.
Torres, D.
Torres-Mejía, G.
Troester, M.A.
Truong, T.
Vachon, C.M.
Vijai, J.
Weinberg, C.R.
Wendt, C.
Winqvist, R.
Wolk, A.
Wu, A.H.
Yamaji, T.
Yang, X.R.
Yu, J.-.
Zheng, W.
Ziogas, A.
Ziv, E.
Dunning, A.M.
Easton, D.F.
Hemingway, H.
Hamann, U.
Kuchenbaecker, K.B.
(2023). Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome med,
Vol.15
(1),
p. 7.
show abstract
full text
BACKGROUND: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts..
Levi, H.
Carmi, S.
Rosset, S.
Yerushalmi, R.
Zick, A.
Yablonski-Peretz, T.
BCAC Consortium,
Wang, Q.
Bolla, M.K.
Dennis, J.
Michailidou, K.
Lush, M.
Ahearn, T.
Andrulis, I.L.
Anton-Culver, H.
Antoniou, A.C.
Arndt, V.
Augustinsson, A.
Auvinen, P.
Beane Freeman, L.
Beckmann, M.
Behrens, S.
Bermisheva, M.
Bodelon, C.
Bogdanova, N.V.
Bojesen, S.E.
Brenner, H.
Byers, H.
Camp, N.
Castelao, J.
Chang-Claude, J.
Chirlaque, M.-.
Chung, W.
Clarke, C.
NBCS Collaborators,
Collee, M.J.
Colonna, S.
CTS Consortium,
Couch, F.
Cox, A.
Cross, S.S.
Czene, K.
Daly, M.
Devilee, P.
Dork, T.
Dossus, L.
Eccles, D.M.
Eliassen, A.H.
Eriksson, M.
Evans, G.
Fasching, P.
Fletcher, O.
Flyger, H.
Fritschi, L.
Gabrielson, M.
Gago-Dominguez, M.
García-Closas, M.
Garcia-Saenz, J.A.
Genkinger, J.
Giles, G.G.
Goldberg, M.
Guénel, P.
Hall, P.
Hamann, U.
He, W.
Hillemanns, P.
Hollestelle, A.
Hoppe, R.
Hopper, J.
ABCTB Investigators,
Jakovchevska, S.
Jakubowska, A.
Jernström, H.
John, E.
Johnson, N.
Jones, M.
Vijai, J.
Kaaks, R.
Khusnutdinova, E.
Kitahara, C.
Koutros, S.
Kristensen, V.
Kurian, A.W.
Lacey, J.
Lambrechts, D.
Le Marchand, L.
Lejbkowicz, F.
Lindblom, A.
Loibl, S.
Lori, A.
Lubinski, J.
Mannermaa, A.
Manoochehri, M.
Mavroudis, D.
Menon, U.
Mulligan, A.
Murphy, R.
Nevelsteen, I.
Newman, W.G.
Obi, N.
O'Brien, K.
Offit, K.
Olshan, A.
Plaseska-Karanfilska, D.
Olson, J.
Panico, S.
Park-Simon, T.-.
Patel, A.
Peterlongo, P.
Rack, B.
Radice, P.
Rennert, G.
Rhenius, V.
Romero, A.
Saloustros, E.
Sandler, D.
Schmidt, M.K.
Schwentner, L.
Shah, M.
Sharma, P.
Simard, J.
Southey, M.
Stone, J.
Tapper, W.J.
Taylor, J.
Teras, L.
Toland, A.E.
Troester, M.
Truong, T.
van der Kolk, L.E.
Weinberg, C.
Wendt, C.
Yang, X.R.
Zheng, W.
Ziogas, A.
Dunning, A.M.
Pharoah, P.
Easton, D.F.
Ben-Sachar, S.
Elefant, N.
Shamir, R.
Elkon, R.
(2023). Evaluation of European-based polygenic risk score for breast cancer in Ashkenazi Jewish women in Israel. J med genet,
Vol.60
(12),
pp. 1186-1197.
show abstract
full text
BACKGROUND: Polygenic risk score (PRS), calculated based on genome-wide association studies (GWASs), can improve breast cancer (BC) risk assessment. To date, most BC GWASs have been performed in individuals of European (EUR) ancestry, and the generalisation of EUR-based PRS to other populations is a major challenge. In this study, we examined the performance of EUR-based BC PRS models in Ashkenazi Jewish (AJ) women. METHODS: We generated PRSs based on data on EUR women from the Breast Cancer Association Consortium (BCAC). We tested the performance of the PRSs in a cohort of 2161 AJ women from Israel (1437 cases and 724 controls) from BCAC (BCAC cohort from Israel (BCAC-IL)). In addition, we tested the performance of these EUR-based BC PRSs, as well as the established 313-SNP EUR BC PRS, in an independent cohort of 181 AJ women from Hadassah Medical Center (HMC) in Israel. RESULTS: In the BCAC-IL cohort, the highest OR per 1 SD was 1.56 (±0.09). The OR for AJ women at the top 10% of the PRS distribution compared with the middle quintile was 2.10 (±0.24). In the HMC cohort, the OR per 1 SD of the EUR-based PRS that performed best in the BCAC-IL cohort was 1.58±0.27. The OR per 1 SD of the commonly used 313-SNP BC PRS was 1.64 (±0.28). CONCLUSIONS: Extant EUR GWAS data can be used for generating PRSs that identify AJ women with markedly elevated risk of BC and therefore hold promise for improving BC risk assessment in AJ women..
Romualdo Cardoso, S.
Gillespie, A.
Haider, S.
Fletcher, O.
(2022). Functional annotation of breast cancer risk loci: current progress and future directions. Br j cancer,
Vol.126
(7),
pp. 981-993.
show abstract
full text
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer..
Dixon-Suen, S.C.
Lewis, S.J.
Martin, R.M.
English, D.R.
Boyle, T.
Giles, G.G.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Lush, M.
Investigators, A.
Ahearn, T.U.
Ambrosone, C.B.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Aronson, K.J.
Augustinsson, A.
Auvinen, P.
Beane Freeman, L.E.
Becher, H.
Beckmann, M.W.
Behrens, S.
Bermisheva, M.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, S.E.
Bonanni, B.
Brenner, H.
Brüning, T.
Buys, S.S.
Camp, N.J.
Campa, D.
Canzian, F.
Castelao, J.E.
Cessna, M.H.
Chang-Claude, J.
Chanock, S.J.
Clarke, C.L.
Conroy, D.M.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Daly, M.B.
Devilee, P.
Dörk, T.
Dwek, M.
Eccles, D.M.
Eliassen, A.H.
Engel, C.
Eriksson, M.
Evans, D.G.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Fritschi, L.
Gabrielson, M.
Gago-Dominguez, M.
García-Closas, M.
García-Sáenz, J.A.
Goldberg, M.S.
Guénel, P.
Gündert, M.
Hahnen, E.
Haiman, C.A.
Häberle, L.
Håkansson, N.
Hall, P.
Hamann, U.
Hart, S.N.
Harvie, M.
Hillemanns, P.
Hollestelle, A.
Hooning, M.J.
Hoppe, R.
Hopper, J.
Howell, A.
Hunter, D.J.
Jakubowska, A.
Janni, W.
John, E.M.
Jung, A.
Kaaks, R.
Keeman, R.
Kitahara, C.M.
Koutros, S.
Kraft, P.
Kristensen, V.N.
Kubelka-Sabit, K.
Kurian, A.W.
Lacey, J.V.
Lambrechts, D.
Le Marchand, L.
Lindblom, A.
Loibl, S.
Lubiński, J.
Mannermaa, A.
Manoochehri, M.
Margolin, S.
Martinez, M.E.
Mavroudis, D.
Menon, U.
Mulligan, A.M.
Murphy, R.A.
Collaborators, N.
Nevanlinna, H.
Nevelsteen, I.
Newman, W.G.
Offit, K.
Olshan, A.F.
Olsson, H.
Orr, N.
Patel, A.
Peto, J.
Plaseska-Karanfilska, D.
Presneau, N.
Rack, B.
Radice, P.
Rees-Punia, E.
Rennert, G.
Rennert, H.S.
Romero, A.
Saloustros, E.
Sandler, D.P.
Schmidt, M.K.
Schmutzler, R.K.
Schwentner, L.
Scott, C.
Shah, M.
Shu, X.-.
Simard, J.
Southey, M.C.
Stone, J.
Surowy, H.
Swerdlow, A.J.
Tamimi, R.M.
Tapper, W.J.
Taylor, J.A.
Terry, M.B.
Tollenaar, R.A.
Troester, M.A.
Truong, T.
Untch, M.
Vachon, C.M.
Joseph, V.
Wappenschmidt, B.
Weinberg, C.R.
Wolk, A.
Yannoukakos, D.
Zheng, W.
Ziogas, A.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
Milne, R.L.
Lynch, B.M.
Breast Cancer Association Consortium,
(2022). Physical activity, sedentary time and breast cancer risk: a Mendelian randomisation study. Br j sports med,
Vol.56
(20),
pp. 1157-1170.
show abstract
OBJECTIVES: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics. METHODS: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105-377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity. RESULTS: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger). CONCLUSION: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women..
Dennis, J.
Tyrer, J.P.
Walker, L.C.
Michailidou, K.
Dorling, L.
Bolla, M.K.
Wang, Q.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Aronson, K.J.
Freeman, L.E.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Bogdanova, N.V.
Bojesen, S.E.
Brenner, H.
Castelao, J.E.
Chang-Claude, J.
Chenevix-Trench, G.
Clarke, C.L.
NBCS Collaborators,
Collée, J.M.
CTS Consortium,
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Devilee, P.
Dörk, T.
Dossus, L.
Eliassen, A.H.
Eriksson, M.
Evans, D.G.
Fasching, P.A.
Figueroa, J.
Fletcher, O.
Flyger, H.
Fritschi, L.
Gabrielson, M.
Gago-Dominguez, M.
García-Closas, M.
Giles, G.G.
González-Neira, A.
Guénel, P.
Hahnen, E.
Haiman, C.A.
Hall, P.
Hollestelle, A.
Hoppe, R.
Hopper, J.L.
Howell, A.
ABCTB Investigators,
kConFab/AOCS Investigators,
Jager, A.
Jakubowska, A.
John, E.M.
Johnson, N.
Jones, M.E.
Jung, A.
Kaaks, R.
Keeman, R.
Khusnutdinova, E.
Kitahara, C.M.
Ko, Y.-.
Kosma, V.-.
Koutros, S.
Kraft, P.
Kristensen, V.N.
Kubelka-Sabit, K.
Kurian, A.W.
Lacey, J.V.
Lambrechts, D.
Larson, N.L.
Linet, M.
Ogrodniczak, A.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Mavroudis, D.
Milne, R.L.
Muranen, T.A.
Murphy, R.A.
Nevanlinna, H.
Olson, J.E.
Olsson, H.
Park-Simon, T.-.
Perou, C.M.
Peterlongo, P.
Plaseska-Karanfilska, D.
Pylkäs, K.
Rennert, G.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Shibli, R.
Smeets, A.
Soucy, P.
Southey, M.C.
Swerdlow, A.J.
Tamimi, R.M.
Taylor, J.A.
Teras, L.R.
Terry, M.B.
Tomlinson, I.
Troester, M.A.
Truong, T.
Vachon, C.M.
Wendt, C.
Winqvist, R.
Wolk, A.
Yang, X.R.
Zheng, W.
Ziogas, A.
Simard, J.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
(2022). Rare germline copy number variants (CNVs) and breast cancer risk. Commun biol,
Vol.5
(1),
p. 65.
show abstract
full text
Germline copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Gene burden tests detected the strongest association for deletions in BRCA1 (P = 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P = 0.0008), ATM (P = 0.002) and BRCA2 (P = 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance..
Baxter, J.S.
Johnson, N.
Tomczyk, K.
Gillespie, A.
Maguire, S.
Brough, R.
Fachal, L.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Aronson, K.J.
Augustinsson, A.
Becher, H.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Bogdanova, N.V.
Bojesen, S.E.
Brenner, H.
Brucker, S.Y.
Cai, Q.
Campa, D.
Canzian, F.
Castelao, J.E.
Chan, T.L.
Chang-Claude, J.
Chanock, S.J.
Chenevix-Trench, G.
Choi, J.-.
Clarke, C.L.
NBCS Collaborators,
Colonna, S.
Conroy, D.M.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Daly, M.B.
Devilee, P.
Dörk, T.
Dossus, L.
Dwek, M.
Eccles, D.M.
Ekici, A.B.
Eliassen, A.H.
Engel, C.
Fasching, P.A.
Figueroa, J.
Flyger, H.
Gago-Dominguez, M.
Gao, C.
García-Closas, M.
García-Sáenz, J.A.
Ghoussaini, M.
Giles, G.G.
Goldberg, M.S.
González-Neira, A.
Guénel, P.
Gündert, M.
Haeberle, L.
Hahnen, E.
Haiman, C.A.
Hall, P.
Hamann, U.
Hartman, M.
Hatse, S.
Hauke, J.
Hollestelle, A.
Hoppe, R.
Hopper, J.L.
Hou, M.-.
kConFab Investigators,
ABCTB Investigators,
Ito, H.
Iwasaki, M.
Jager, A.
Jakubowska, A.
Janni, W.
John, E.M.
Joseph, V.
Jung, A.
Kaaks, R.
Kang, D.
Keeman, R.
Khusnutdinova, E.
Kim, S.-.
Kosma, V.-.
Kraft, P.
Kristensen, V.N.
Kubelka-Sabit, K.
Kurian, A.W.
Kwong, A.
Lacey, J.V.
Lambrechts, D.
Larson, N.L.
Larsson, S.C.
Le Marchand, L.
Lejbkowicz, F.
Li, J.
Long, J.
Lophatananon, A.
Lubiński, J.
Mannermaa, A.
Manoochehri, M.
Manoukian, S.
Margolin, S.
Matsuo, K.
Mavroudis, D.
Mayes, R.
Menon, U.
Milne, R.L.
Mohd Taib, N.A.
Muir, K.
Muranen, T.A.
Murphy, R.A.
Nevanlinna, H.
O'Brien, K.M.
Offit, K.
Olson, J.E.
Olsson, H.
Park, S.K.
Park-Simon, T.-.
Patel, A.V.
Peterlongo, P.
Peto, J.
Plaseska-Karanfilska, D.
Presneau, N.
Pylkäs, K.
Rack, B.
Rennert, G.
Romero, A.
Ruebner, M.
Rüdiger, T.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Schneeweiss, A.
Schoemaker, M.J.
Shah, M.
Shen, C.-.
Shu, X.-.
Simard, J.
Southey, M.C.
Stone, J.
Surowy, H.
Swerdlow, A.J.
Tamimi, R.M.
Tapper, W.J.
Taylor, J.A.
Teo, S.H.
Teras, L.R.
Terry, M.B.
Toland, A.E.
Tomlinson, I.
Truong, T.
Tseng, C.-.
Untch, M.
Vachon, C.M.
van den Ouweland, A.M.
Wang, S.S.
Weinberg, C.R.
Wendt, C.
Winham, S.J.
Winqvist, R.
Wolk, A.
Wu, A.H.
Yamaji, T.
Zheng, W.
Ziogas, A.
Pharoah, P.D.
Dunning, A.M.
Easton, D.F.
Pettitt, S.J.
Lord, C.J.
Haider, S.
Orr, N.
Fletcher, O.
(2021). Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. Am j hum genet,
Vol.108
(7),
pp. 1190-1203.
show abstract
full text
A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31)..
Johnson, N.
Maguire, S.
Morra, A.
Kapoor, P.M.
Tomczyk, K.
Jones, M.E.
Schoemaker, M.J.
Gilham, C.
Bolla, M.K.
Wang, Q.
Dennis, J.
Ahearn, T.U.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Aronson, K.J.
Augustinsson, A.
Baynes, C.
Freeman, L.E.
Beckmann, M.W.
Benitez, J.
Bermisheva, M.
Blomqvist, C.
Boeckx, B.
Bogdanova, N.V.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Burwinkel, B.
Campa, D.
Canzian, F.
Castelao, J.E.
Chanock, S.J.
Chenevix-Trench, G.
Clarke, C.L.
NBCS Collaborators,
Conroy, D.M.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Dörk, T.
Eliassen, A.H.
Engel, C.
Evans, D.G.
Fasching, P.A.
Figueroa, J.
Floris, G.
Flyger, H.
Gago-Dominguez, M.
Gapstur, S.M.
García-Closas, M.
Gaudet, M.M.
Giles, G.G.
Goldberg, M.S.
González-Neira, A.
AOCS Group,
Guénel, P.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hall, P.
Hamann, U.
Harrington, P.A.
Hart, S.N.
Hooning, M.J.
Hopper, J.L.
Howell, A.
Hunter, D.J.
ABCTB Investigators,
kConFab Investigators,
Jager, A.
Jakubowska, A.
John, E.M.
Kaaks, R.
Keeman, R.
Khusnutdinova, E.
Kitahara, C.M.
Kosma, V.-.
Koutros, S.
Kraft, P.
Kristensen, V.N.
Kurian, A.W.
Lambrechts, D.
Le Marchand, L.
Linet, M.
Lubiński, J.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Martens, J.W.
Mavroudis, D.
Mayes, R.
Meindl, A.
Milne, R.L.
Neuhausen, S.L.
Nevanlinna, H.
Newman, W.G.
Nielsen, S.F.
Nordestgaard, B.G.
Obi, N.
Olshan, A.F.
Olson, J.E.
Olsson, H.
Orban, E.
Park-Simon, T.-.
Peterlongo, P.
Plaseska-Karanfilska, D.
Pylkäs, K.
Rennert, G.
Rennert, H.S.
Ruddy, K.J.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmutzler, R.K.
Scott, C.
Shu, X.-.
Simard, J.
Smichkoska, S.
Sohn, C.
Southey, M.C.
Spinelli, J.J.
Stone, J.
Tamimi, R.M.
Taylor, J.A.
Tollenaar, R.A.
Tomlinson, I.
Troester, M.A.
Truong, T.
Vachon, C.M.
van Veen, E.M.
Wang, S.S.
Weinberg, C.R.
Wendt, C.
Wildiers, H.
Winqvist, R.
Wolk, A.
Zheng, W.
Ziogas, A.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
Howie, A.F.
Peto, J.
Dos-Santos-Silva, I.
Swerdlow, A.J.
Chang-Claude, J.
Schmidt, M.K.
Orr, N.
Fletcher, O.
(2021). CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. Br j cancer,
Vol.124
(4),
pp. 842-854.
show abstract
full text
BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women..
Holgersen, E.M.
Gillespie, A.
Leavy, O.C.
Baxter, J.S.
Zvereva, A.
Muirhead, G.
Johnson, N.
Sipos, O.
Dryden, N.H.
Broome, L.R.
Chen, Y.
Kozin, I.
Dudbridge, F.
Fletcher, O.
Haider, S.
(2021). Identifying high-confidence capture Hi-C interactions using CHiCANE. Nat protoc,
Vol.16
(4),
pp. 2257-2285.
show abstract
The ability to identify regulatory interactions that mediate gene expression changes through distal elements, such as risk loci, is transforming our understanding of how genomes are spatially organized and regulated. Capture Hi-C (CHi-C) is a powerful tool to delineate such regulatory interactions. However, primary analysis and downstream interpretation of CHi-C profiles remains challenging and relies on disparate tools with ad-hoc input/output formats and specific assumptions for statistical modeling. Here we present a data processing and interaction calling toolkit (CHiCANE), specialized for the analysis and meaningful interpretation of CHi-C assays. In this protocol, we demonstrate applications of CHiCANE to region capture Hi-C (rCHi-C) and promoter capture Hi-C (pCHi-C) libraries, followed by quality assessment of interaction peaks, as well as downstream analysis specific to rCHi-C and pCHi-C to aid functional interpretation. For a typical rCHi-C/pCHi-C dataset this protocol takes up to 3 d for users with a moderate understanding of R programming and statistical concepts, although this is dependent on dataset size and compute power available. CHiCANE is freely available at https://cran.r-project.org/web/packages/chicane ..
Maguire, S.
Perraki, E.
Tomczyk, K.
Jones, M.E.
Fletcher, O.
Pugh, M.
Winter, T.
Thompson, K.
Cooke, R.
kConFab Consortium,
Trainer, A.
James, P.
Bojesen, S.
Flyger, H.
Nevanlinna, H.
Mattson, J.
Friedman, E.
Laitman, Y.
Palli, D.
Masala, G.
Zanna, I.
Ottini, L.
Silvestri, V.
Hollestelle, A.
Hooning, M.J.
Novaković, S.
Krajc, M.
Gago-Dominguez, M.
Castelao, J.E.
Olsson, H.
Hedenfalk, I.
Saloustros, E.
Georgoulias, V.
Easton, D.F.
Pharoah, P.
Dunning, A.M.
Bishop, D.T.
Neuhausen, S.L.
Steele, L.
Ashworth, A.
Garcia Closas, M.
Houlston, R.
Swerdlow, A.
Orr, N.
(2021). Common Susceptibility Loci for Male Breast Cancer. J natl cancer inst,
Vol.113
(4),
pp. 453-461.
show abstract
full text
BACKGROUND: The etiology of male breast cancer (MBC) is poorly understood. In particular, the extent to which the genetic basis of MBC differs from female breast cancer (FBC) is unknown. A previous genome-wide association study of MBC identified 2 predisposition loci for the disease, both of which were also associated with risk of FBC. METHODS: We performed genome-wide single nucleotide polymorphism genotyping of European ancestry MBC case subjects and controls in 3 stages. Associations between directly genotyped and imputed single nucleotide polymorphisms with MBC were assessed using fixed-effects meta-analysis of 1380 cases and 3620 controls. Replication genotyping of 810 cases and 1026 controls was used to validate variants with P values less than 1 × 10-06. Genetic correlation with FBC was evaluated using linkage disequilibrium score regression, by comprehensively examining the associations of published FBC risk loci with risk of MBC and by assessing associations between a FBC polygenic risk score and MBC. All statistical tests were 2-sided. RESULTS: The genome-wide association study identified 3 novel MBC susceptibility loci that attained genome-wide statistical significance (P < 5 × 10-08). Genetic correlation analysis revealed a strong shared genetic basis with estrogen receptor-positive FBC. Men in the top quintile of genetic risk had a fourfold increased risk of breast cancer relative to those in the bottom quintile (odds ratio = 3.86, 95% confidence interval = 3.07 to 4.87, P = 2.08 × 10-30). CONCLUSIONS: These findings advance our understanding of the genetic basis of MBC, providing support for an overlapping genetic etiology with FBC and identifying a fourfold high-risk group of susceptible men..
Iwata, H.
Umeyama, Y.
Liu, Y.
Zhang, Z.
Schnell, P.
Mori, Y.
Fletcher, O.
Marshall, J.-.
Johnson, J.G.
Wood, L.S.
Toi, M.
Finn, R.S.
Turner, N.C.
Bartlett, C.H.
Cristofanilli, M.
(2021). Evaluation of the Association of Polymorphisms With Palbociclib-Induced Neutropenia: Pharmacogenetic Analysis of PALOMA-2/-3. Oncologist,
Vol.26
(7),
pp. e1143-e1155.
show abstract
full text
BACKGROUND: The most frequently reported treatment-related adverse event in clinical trials with the cyclin-dependent kinase 4/6 (CDK4/6) inhibitor palbociclib is neutropenia. Allelic variants in ABCB1 and ERCC1 might be associated with early occurrence (i.e., end of week 2 treatment) of grade 3/4 neutropenia. Pharmacogenetic analyses were performed to uncover associations between single nucleotide polymorphisms (SNPs) in these genes, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. MATERIALS AND METHODS: ABCB1 (rs1045642, rs1128503) and ERCC1 (rs3212986, rs11615) were analyzed in germline DNA from palbociclib-treated patients from PALOMA-2 (n = 584) and PALOMA-3 (n = 442). SNP, race, and cycle 1 day 15 (C1D15) absolute neutrophil count (ANC) data were available for 652 patients. Univariate and multivariable analyses evaluated associations between SNPs, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. Analyses were stratified by Asian (n = 122) and non-Asian (n = 530) ethnicity. Median progression-free survival (mPFS) was estimated using the Kaplan-Meier method. The effect of genetic variants on palbociclib pharmacokinetics was analyzed. RESULTS: ABCB1 and ERCC1_rs11615 SNP frequencies differed between Asian and non-Asian patients. Multivariable analysis showed that low baseline ANC was a strong independent risk factor for C1D15 grade 3/4 neutropenia regardless of race (Asians: odds ratio [OR], 6.033, 95% confidence interval [CI], 2.615-13.922, p < .0001; Non-Asians: OR, 6.884, 95% CI, 4.138-11.451, p < .0001). ABCB1_rs1128503 (C/C vs. T/T: OR, 0.57, 95% CI, 0.311-1.047, p = .070) and ERCC1_rs11615 (A/A vs. G/G: OR, 1.75, 95% CI, 0.901-3.397, p = .098) were potential independent risk factors for C1D15 grade 3/4 neutropenia in non-Asian patients. Palbociclib mPFS was consistent across genetic variants; exposure was not associated with ABCB1 genotype. CONCLUSION: This is the first comprehensive assessment of pharmacogenetic data in relationship to exposure to a CDK4/6 inhibitor. Pharmacogenetic testing may inform about potentially increased likelihood of patients developing severe neutropenia (NCT01740427, NCT01942135). IMPLICATIONS FOR PRACTICE: Palbociclib plus endocrine therapy improves hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer outcomes, but is commonly associated with neutropenia. Genetic variants in ABCB1 may influence palbociclib exposure, and in ERCC1 are associated with chemotherapy-induced severe neutropenia. Here, the associations of single nucleotide polymorphisms in these genes and baseline characteristics with neutropenia were assessed. Low baseline absolute neutrophil count was a strong risk factor (p < .0001) for grade 3/4 neutropenia. There was a trend indicating that ABCB1_rs1128503 and ERCC1_rs11615 were potential risk factors (p < .10) for grade 3/4 neutropenia in non-Asian patients. Pharmacogenetic testing could inform clinicians about the likelihood of severe neutropenia with palbociclib..
Park, J.
Choi, J.-.
Choi, J.
Chung, S.
Song, N.
Park, S.K.
Han, W.
Noh, D.-.
Ahn, S.-.
Lee, J.W.
Kim, M.K.
Jee, S.H.
Wen, W.
Bolla, M.K.
Wang, Q.
Dennis, J.
Michailidou, K.
Shah, M.
Conroy, D.M.
Harrington, P.A.
Mayes, R.
Czene, K.
Hall, P.
Teras, L.R.
Patel, A.V.
Couch, F.J.
Olson, J.E.
Sawyer, E.J.
Roylance, R.
Bojesen, S.E.
Flyger, H.
Lambrechts, D.
Baten, A.
Matsuo, K.
Ito, H.
Guénel, P.
Truong, T.
Keeman, R.
Schmidt, M.K.
Wu, A.H.
Tseng, C.-.
Cox, A.
Cross, S.S.
kConFab Investigators,
Andrulis, I.L.
Hopper, J.L.
Southey, M.C.
Wu, P.-.
Shen, C.-.
Fasching, P.A.
Ekici, A.B.
Muir, K.
Lophatananon, A.
Brenner, H.
Arndt, V.
Jones, M.E.
Swerdlow, A.J.
Hoppe, R.
Ko, Y.-.
Hartman, M.
Li, J.
Mannermaa, A.
Hartikainen, J.M.
Benitez, J.
González-Neira, A.
Haiman, C.A.
Dörk, T.
Bogdanova, N.V.
Teo, S.H.
Mohd Taib, N.A.
Fletcher, O.
Johnson, N.
Grip, M.
Winqvist, R.
Blomqvist, C.
Nevanlinna, H.
Lindblom, A.
Wendt, C.
Kristensen, V.N.
Nbcs Collaborators,
Tollenaar, R.A.
Heemskerk-Gerritsen, B.A.
Radice, P.
Bonanni, B.
Hamann, U.
Manoochehri, M.
Lacey, J.V.
Martinez, M.E.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
Yoo, K.-.
Kang, D.
(2021). Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers (basel),
Vol.13
(10).
show abstract
full text
In this study we aim to examine gene-environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10-3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10-4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk..
Fachal, L.
Aschard, H.
Beesley, J.
Barnes, D.R.
Allen, J.
Kar, S.
Pooley, K.A.
Dennis, J.
Michailidou, K.
Turman, C.
Soucy, P.
Lemaçon, A.
Lush, M.
Tyrer, J.P.
Ghoussaini, M.
Moradi Marjaneh, M.
Jiang, X.
Agata, S.
Aittomäki, K.
Alonso, M.R.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arason, A.
Arndt, V.
Aronson, K.J.
Arun, B.K.
Auber, B.
Auer, P.L.
Azzollini, J.
Balmaña, J.
Barkardottir, R.B.
Barrowdale, D.
Beeghly-Fadiel, A.
Benitez, J.
Bermisheva, M.
Białkowska, K.
Blanco, A.M.
Blomqvist, C.
Blot, W.
Bogdanova, N.V.
Bojesen, S.E.
Bolla, M.K.
Bonanni, B.
Borg, A.
Bosse, K.
Brauch, H.
Brenner, H.
Briceno, I.
Brock, I.W.
Brooks-Wilson, A.
Brüning, T.
Burwinkel, B.
Buys, S.S.
Cai, Q.
Caldés, T.
Caligo, M.A.
Camp, N.J.
Campbell, I.
Canzian, F.
Carroll, J.S.
Carter, B.D.
Castelao, J.E.
Chiquette, J.
Christiansen, H.
Chung, W.K.
Claes, K.B.
Clarke, C.L.
GEMO Study Collaborators,
EMBRACE Collaborators,
Collée, J.M.
Cornelissen, S.
Couch, F.J.
Cox, A.
Cross, S.S.
Cybulski, C.
Czene, K.
Daly, M.B.
de la Hoya, M.
Devilee, P.
Diez, O.
Ding, Y.C.
Dite, G.S.
Domchek, S.M.
Dörk, T.
Dos-Santos-Silva, I.
Droit, A.
Dubois, S.
Dumont, M.
Duran, M.
Durcan, L.
Dwek, M.
Eccles, D.M.
Engel, C.
Eriksson, M.
Evans, D.G.
Fasching, P.A.
Fletcher, O.
Floris, G.
Flyger, H.
Foretova, L.
Foulkes, W.D.
Friedman, E.
Fritschi, L.
Frost, D.
Gabrielson, M.
Gago-Dominguez, M.
Gambino, G.
Ganz, P.A.
Gapstur, S.M.
Garber, J.
García-Sáenz, J.A.
Gaudet, M.M.
Georgoulias, V.
Giles, G.G.
Glendon, G.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Tibiletti, M.G.
Greene, M.H.
Grip, M.
Gronwald, J.
Grundy, A.
Guénel, P.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hall, P.
Hamann, U.
Harrington, P.A.
Hartikainen, J.M.
Hartman, M.
He, W.
Healey, C.S.
Heemskerk-Gerritsen, B.A.
Heyworth, J.
Hillemanns, P.
Hogervorst, F.B.
Hollestelle, A.
Hooning, M.J.
Hopper, J.L.
Howell, A.
Huang, G.
Hulick, P.J.
Imyanitov, E.N.
KConFab Investigators,
HEBON Investigators,
ABCTB Investigators,
Isaacs, C.
Iwasaki, M.
Jager, A.
Jakimovska, M.
Jakubowska, A.
James, P.A.
Janavicius, R.
Jankowitz, R.C.
John, E.M.
Johnson, N.
Jones, M.E.
Jukkola-Vuorinen, A.
Jung, A.
Kaaks, R.
Kang, D.
Kapoor, P.M.
Karlan, B.Y.
Keeman, R.
Kerin, M.J.
Khusnutdinova, E.
Kiiski, J.I.
Kirk, J.
Kitahara, C.M.
Ko, Y.-.
Konstantopoulou, I.
Kosma, V.-.
Koutros, S.
Kubelka-Sabit, K.
Kwong, A.
Kyriacou, K.
Laitman, Y.
Lambrechts, D.
Lee, E.
Leslie, G.
Lester, J.
Lesueur, F.
Lindblom, A.
Lo, W.-.
Long, J.
Lophatananon, A.
Loud, J.T.
Lubiński, J.
MacInnis, R.J.
Maishman, T.
Makalic, E.
Mannermaa, A.
Manoochehri, M.
Manoukian, S.
Margolin, S.
Martinez, M.E.
Matsuo, K.
Maurer, T.
Mavroudis, D.
Mayes, R.
McGuffog, L.
McLean, C.
Mebirouk, N.
Meindl, A.
Miller, A.
Miller, N.
Montagna, M.
Moreno, F.
Muir, K.
Mulligan, A.M.
Muñoz-Garzon, V.M.
Muranen, T.A.
Narod, S.A.
Nassir, R.
Nathanson, K.L.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Nielsen, F.C.
Nikitina-Zake, L.
Norman, A.
Offit, K.
Olah, E.
Olopade, O.I.
Olsson, H.
Orr, N.
Osorio, A.
Pankratz, V.S.
Papp, J.
Park, S.K.
Park-Simon, T.-.
Parsons, M.T.
Paul, J.
Pedersen, I.S.
Peissel, B.
Peshkin, B.
Peterlongo, P.
Peto, J.
Plaseska-Karanfilska, D.
Prajzendanc, K.
Prentice, R.
Presneau, N.
Prokofyeva, D.
Pujana, M.A.
Pylkäs, K.
Radice, P.
Ramus, S.J.
Rantala, J.
Rau-Murthy, R.
Rennert, G.
Risch, H.A.
Robson, M.
Romero, A.
Rossing, M.
Saloustros, E.
Sánchez-Herrero, E.
Sandler, D.P.
Santamariña, M.
Saunders, C.
Sawyer, E.J.
Scheuner, M.T.
Schmidt, D.F.
Schmutzler, R.K.
Schneeweiss, A.
Schoemaker, M.J.
Schöttker, B.
Schürmann, P.
Scott, C.
Scott, R.J.
Senter, L.
Seynaeve, C.M.
Shah, M.
Sharma, P.
Shen, C.-.
Shu, X.-.
Singer, C.F.
Slavin, T.P.
Smichkoska, S.
Southey, M.C.
Spinelli, J.J.
Spurdle, A.B.
Stone, J.
Stoppa-Lyonnet, D.
Sutter, C.
Swerdlow, A.J.
Tamimi, R.M.
Tan, Y.Y.
Tapper, W.J.
Taylor, J.A.
Teixeira, M.R.
Tengström, M.
Teo, S.H.
Terry, M.B.
Teulé, A.
Thomassen, M.
Thull, D.L.
Tischkowitz, M.
Toland, A.E.
Tollenaar, R.A.
Tomlinson, I.
Torres, D.
Torres-Mejía, G.
Troester, M.A.
Truong, T.
Tung, N.
Tzardi, M.
Ulmer, H.-.
Vachon, C.M.
van Asperen, C.J.
van der Kolk, L.E.
van Rensburg, E.J.
Vega, A.
Viel, A.
Vijai, J.
Vogel, M.J.
Wang, Q.
Wappenschmidt, B.
Weinberg, C.R.
Weitzel, J.N.
Wendt, C.
Wildiers, H.
Winqvist, R.
Wolk, A.
Wu, A.H.
Yannoukakos, D.
Zhang, Y.
Zheng, W.
Hunter, D.
Pharoah, P.D.
Chang-Claude, J.
García-Closas, M.
Schmidt, M.K.
Milne, R.L.
Kristensen, V.N.
French, J.D.
Edwards, S.L.
Antoniou, A.C.
Chenevix-Trench, G.
Simard, J.
Easton, D.F.
Kraft, P.
Dunning, A.M.
(2020). Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat genet,
Vol.52
(1),
pp. 56-73.
show abstract
full text
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes..
Feng, H.
Gusev, A.
Pasaniuc, B.
Wu, L.
Long, J.
Abu-Full, Z.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Antoniou, A.C.
Arason, A.
Arndt, V.
Aronson, K.J.
Arun, B.K.
Asseryanis, E.
Auer, P.L.
Azzollini, J.
Balmaña, J.
Barkardottir, R.B.
Barnes, D.R.
Barrowdale, D.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Białkowska, K.
Blanco, A.
Blomqvist, C.
Boeckx, B.
Bogdanova, N.V.
Bojesen, S.E.
Bolla, M.K.
Bonanni, B.
Borg, A.
Brauch, H.
Brenner, H.
Briceno, I.
Broeks, A.
Brüning, T.
Burwinkel, B.
Cai, Q.
Caldés, T.
Caligo, M.A.
Campbell, I.
Canisius, S.
Campa, D.
Carter, B.D.
Carter, J.
Castelao, J.E.
Chang-Claude, J.
Chanock, S.J.
Christiansen, H.
Chung, W.K.
Claes, K.B.
Clarke, C.L.
GEMO Study Collaborators,
EMBRACE Collaborators,
GC-HBOC study Collaborators,
Couch, F.J.
Cox, A.
Cross, S.S.
Cybulski, C.
Czene, K.
Daly, M.B.
de la Hoya, M.
De Leeneer, K.
Dennis, J.
Devilee, P.
Diez, O.
Domchek, S.M.
Dörk, T.
Dos-Santos-Silva, I.
Dunning, A.M.
Dwek, M.
Eccles, D.M.
Ejlertsen, B.
Ellberg, C.
Engel, C.
Eriksson, M.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Fostira, F.
Friedman, E.
Fritschi, L.
Frost, D.
Gabrielson, M.
Ganz, P.A.
Gapstur, S.M.
Garber, J.
García-Closas, M.
García-Sáenz, J.A.
Gaudet, M.M.
Giles, G.G.
Glendon, G.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Greene, M.H.
Gronwald, J.
Guénel, P.
Haiman, C.A.
Hall, P.
Hamann, U.
Hake, C.
He, W.
Heyworth, J.
Hogervorst, F.B.
Hollestelle, A.
Hooning, M.J.
Hoover, R.N.
Hopper, J.L.
Huang, G.
Hulick, P.J.
Humphreys, K.
Imyanitov, E.N.
ABCTB Investigators,
HEBON Investigators,
BCFR Investigators,
OCGN Investigators,
Isaacs, C.
Jakimovska, M.
Jakubowska, A.
James, P.
Janavicius, R.
Jankowitz, R.C.
John, E.M.
Johnson, N.
Joseph, V.
Jung, A.
Karlan, B.Y.
Khusnutdinova, E.
Kiiski, J.I.
Konstantopoulou, I.
Kristensen, V.N.
Laitman, Y.
Lambrechts, D.
Lazaro, C.
Leroux, D.
Leslie, G.
Lester, J.
Lesueur, F.
Lindor, N.
Lindström, S.
Lo, W.-.
Loud, J.T.
Lubiński, J.
Makalic, E.
Mannermaa, A.
Manoochehri, M.
Manoukian, S.
Margolin, S.
Martens, J.W.
Martinez, M.E.
Matricardi, L.
Maurer, T.
Mavroudis, D.
McGuffog, L.
Meindl, A.
Menon, U.
Michailidou, K.
Kapoor, P.M.
Miller, A.
Montagna, M.
Moreno, F.
Moserle, L.
Mulligan, A.M.
Muranen, T.A.
Nathanson, K.L.
Neuhausen, S.L.
Nevanlinna, H.
Nevelsteen, I.
Nielsen, F.C.
Nikitina-Zake, L.
Offit, K.
Olah, E.
Olopade, O.I.
Olsson, H.
Osorio, A.
Papp, J.
Park-Simon, T.-.
Parsons, M.T.
Pedersen, I.S.
Peixoto, A.
Peterlongo, P.
Peto, J.
Pharoah, P.D.
Phillips, K.-.
Plaseska-Karanfilska, D.
Poppe, B.
Pradhan, N.
Prajzendanc, K.
Presneau, N.
Punie, K.
Pylkäs, K.
Radice, P.
Rantala, J.
Rashid, M.U.
Rennert, G.
Risch, H.A.
Robson, M.
Romero, A.
Saloustros, E.
Sandler, D.P.
Santos, C.
Sawyer, E.J.
Schmidt, M.K.
Schmidt, D.F.
Schmutzler, R.K.
Schoemaker, M.J.
Scott, R.J.
Sharma, P.
Shu, X.-.
Simard, J.
Singer, C.F.
Skytte, A.-.
Soucy, P.
Southey, M.C.
Spinelli, J.J.
Spurdle, A.B.
Stone, J.
Swerdlow, A.J.
Tapper, W.J.
Taylor, J.A.
Teixeira, M.R.
Terry, M.B.
Teulé, A.
Thomassen, M.
Thöne, K.
Thull, D.L.
Tischkowitz, M.
Toland, A.E.
Tollenaar, R.A.
Torres, D.
Truong, T.
Tung, N.
Vachon, C.M.
van Asperen, C.J.
van den Ouweland, A.M.
van Rensburg, E.J.
Vega, A.
Viel, A.
Vieiro-Balo, P.
Wang, Q.
Wappenschmidt, B.
Weinberg, C.R.
Weitzel, J.N.
Wendt, C.
Winqvist, R.
Yang, X.R.
Yannoukakos, D.
Ziogas, A.
Milne, R.L.
Easton, D.F.
Chenevix-Trench, G.
Zheng, W.
Kraft, P.
Jiang, X.
(2020). Transcriptome-wide association study of breast cancer risk by estrogen-receptor status. Genet epidemiol,
Vol.44
(5),
pp. 442-468.
show abstract
full text
Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer..
Manoochehri, M.
Jones, M.
Tomczyk, K.
Fletcher, O.
Schoemaker, M.J.
Swerdlow, A.J.
Borhani, N.
Hamann, U.
(2020). DNA methylation of the long intergenic noncoding RNA 299 gene in triple-negative breast cancer: results from a prospective study. Sci rep,
Vol.10
(1),
p. 11762.
show abstract
full text
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype associated with a high rate of recurrence and poor prognosis. Recently we identified a hypermethylation in the long noncoding RNA 299 (LINC00299) gene in blood-derived DNA from TNBC patients compared with healthy controls implying that LINC00299 hypermethylation may serve as a circulating biomarker for TNBC. In the present study, we investigated whether LINC00299 methylation is associated with TNBC in a prospective nested breast cancer case-control study within the Generations Study. Methylation at cg06588802 in LINC00299 was measured in 154 TNBC cases and 159 breast cancer-free matched controls using MethyLight droplet digital PCR. To assess the association between methylation level and TNBC risk, logistic regression was used to calculate odd ratios and 95% confidence intervals, adjusted for smoking status. We found no evidence for association between methylation levels and TNBC overall (P = 0.062). Subgroup analysis according to age at diagnosis and age at blood draw revealed increased methylation levels in TNBC cases compared with controls in the young age groups [age 26-52 (P = 0.0025) and age 22-46 (P = 0.001), respectively]. Our results suggest a potential association of LINC00299 hypermethylation with TNBC in young women..
Shu, X.
Wu, L.
Khankari, N.K.
Shu, X.-.
Wang, T.J.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Milne, R.L.
Schmidt, M.K.
Pharoah, P.D.
Andrulis, I.L.
Hunter, D.J.
Simard, J.
Easton, D.F.
Zheng, W.
Breast Cancer Association Consortium,
(2019). Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. Int j epidemiol,
Vol.48
(3),
pp. 795-806.
show abstract
full text
BACKGROUND: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. METHODS: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. RESULTS: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 × 10-4], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 × 10-4), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 × 10-19) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 × 10-6). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. CONCLUSIONS: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer..
Mavaddat, N.
Michailidou, K.
Dennis, J.
Lush, M.
Fachal, L.
Lee, A.
Tyrer, J.P.
Chen, T.-.
Wang, Q.
Bolla, M.K.
Yang, X.
Adank, M.A.
Ahearn, T.
Aittomäki, K.
Allen, J.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Aronson, K.J.
Auer, P.L.
Auvinen, P.
Barrdahl, M.
Beane Freeman, L.E.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Bernstein, L.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, S.E.
Bonanni, B.
Børresen-Dale, A.-.
Brauch, H.
Bremer, M.
Brenner, H.
Brentnall, A.
Brock, I.W.
Brooks-Wilson, A.
Brucker, S.Y.
Brüning, T.
Burwinkel, B.
Campa, D.
Carter, B.D.
Castelao, J.E.
Chanock, S.J.
Chlebowski, R.
Christiansen, H.
Clarke, C.L.
Collée, J.M.
Cordina-Duverger, E.
Cornelissen, S.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Daly, M.B.
Devilee, P.
Dörk, T.
Dos-Santos-Silva, I.
Dumont, M.
Durcan, L.
Dwek, M.
Eccles, D.M.
Ekici, A.B.
Eliassen, A.H.
Ellberg, C.
Engel, C.
Eriksson, M.
Evans, D.G.
Fasching, P.A.
Figueroa, J.
Fletcher, O.
Flyger, H.
Försti, A.
Fritschi, L.
Gabrielson, M.
Gago-Dominguez, M.
Gapstur, S.M.
García-Sáenz, J.A.
Gaudet, M.M.
Georgoulias, V.
Giles, G.G.
Gilyazova, I.R.
Glendon, G.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Grenaker Alnæs, G.I.
Grip, M.
Gronwald, J.
Grundy, A.
Guénel, P.
Haeberle, L.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hamann, U.
Hankinson, S.E.
Harkness, E.F.
Hart, S.N.
He, W.
Hein, A.
Heyworth, J.
Hillemanns, P.
Hollestelle, A.
Hooning, M.J.
Hoover, R.N.
Hopper, J.L.
Howell, A.
Huang, G.
Humphreys, K.
Hunter, D.J.
Jakimovska, M.
Jakubowska, A.
Janni, W.
John, E.M.
Johnson, N.
Jones, M.E.
Jukkola-Vuorinen, A.
Jung, A.
Kaaks, R.
Kaczmarek, K.
Kataja, V.
Keeman, R.
Kerin, M.J.
Khusnutdinova, E.
Kiiski, J.I.
Knight, J.A.
Ko, Y.-.
Kosma, V.-.
Koutros, S.
Kristensen, V.N.
Krüger, U.
Kühl, T.
Lambrechts, D.
Le Marchand, L.
Lee, E.
Lejbkowicz, F.
Lilyquist, J.
Lindblom, A.
Lindström, S.
Lissowska, J.
Lo, W.-.
Loibl, S.
Long, J.
Lubiński, J.
Lux, M.P.
MacInnis, R.J.
Maishman, T.
Makalic, E.
Maleva Kostovska, I.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Martens, J.W.
Martinez, M.E.
Mavroudis, D.
McLean, C.
Meindl, A.
Menon, U.
Middha, P.
Miller, N.
Moreno, F.
Mulligan, A.M.
Mulot, C.
Muñoz-Garzon, V.M.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Newman, W.G.
Nielsen, S.F.
Nordestgaard, B.G.
Norman, A.
Offit, K.
Olson, J.E.
Olsson, H.
Orr, N.
Pankratz, V.S.
Park-Simon, T.-.
Perez, J.I.
Pérez-Barrios, C.
Peterlongo, P.
Peto, J.
Pinchev, M.
Plaseska-Karanfilska, D.
Polley, E.C.
Prentice, R.
Presneau, N.
Prokofyeva, D.
Purrington, K.
Pylkäs, K.
Rack, B.
Radice, P.
Rau-Murthy, R.
Rennert, G.
Rennert, H.S.
Rhenius, V.
Robson, M.
Romero, A.
Ruddy, K.J.
Ruebner, M.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmidt, D.F.
Schmutzler, R.K.
Schneeweiss, A.
Schoemaker, M.J.
Schumacher, F.
Schürmann, P.
Schwentner, L.
Scott, C.
Scott, R.J.
Seynaeve, C.
Shah, M.
Sherman, M.E.
Shrubsole, M.J.
Shu, X.-.
Slager, S.
Smeets, A.
Sohn, C.
Soucy, P.
Southey, M.C.
Spinelli, J.J.
Stegmaier, C.
Stone, J.
Swerdlow, A.J.
Tamimi, R.M.
Tapper, W.J.
Taylor, J.A.
Terry, M.B.
Thöne, K.
Tollenaar, R.A.
Tomlinson, I.
Truong, T.
Tzardi, M.
Ulmer, H.-.
Untch, M.
Vachon, C.M.
van Veen, E.M.
Vijai, J.
Weinberg, C.R.
Wendt, C.
Whittemore, A.S.
Wildiers, H.
Willett, W.
Winqvist, R.
Wolk, A.
Yang, X.R.
Yannoukakos, D.
Zhang, Y.
Zheng, W.
Ziogas, A.
ABCTB Investigators,
kConFab/AOCS Investigators,
NBCS Collaborators,
Dunning, A.M.
Thompson, D.J.
Chenevix-Trench, G.
Chang-Claude, J.
Schmidt, M.K.
Hall, P.
Milne, R.L.
Pharoah, P.D.
Antoniou, A.C.
Chatterjee, N.
Kraft, P.
García-Closas, M.
Simard, J.
Easton, D.F.
(2019). Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am j hum genet,
Vol.104
(1),
pp. 21-34.
show abstract
full text
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs..
Ferreira, M.A.
Gamazon, E.R.
Al-Ejeh, F.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Arason, A.
Arndt, V.
Aronson, K.J.
Arun, B.K.
Asseryanis, E.
Azzollini, J.
Balmaña, J.
Barnes, D.R.
Barrowdale, D.
Beckmann, M.W.
Behrens, S.
Benitez, J.
Bermisheva, M.
Białkowska, K.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, S.E.
Bolla, M.K.
Borg, A.
Brauch, H.
Brenner, H.
Broeks, A.
Burwinkel, B.
Caldés, T.
Caligo, M.A.
Campa, D.
Campbell, I.
Canzian, F.
Carter, J.
Carter, B.D.
Castelao, J.E.
Chang-Claude, J.
Chanock, S.J.
Christiansen, H.
Chung, W.K.
Claes, K.B.
Clarke, C.L.
EMBRACE Collaborators,
GC-HBOC Study Collaborators,
GEMO Study Collaborators,
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Daly, M.B.
de la Hoya, M.
Dennis, J.
Devilee, P.
Diez, O.
Dörk, T.
Dunning, A.M.
Dwek, M.
Eccles, D.M.
Ejlertsen, B.
Ellberg, C.
Engel, C.
Eriksson, M.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Friedman, E.
Frost, D.
Gabrielson, M.
Gago-Dominguez, M.
Ganz, P.A.
Gapstur, S.M.
Garber, J.
García-Closas, M.
García-Sáenz, J.A.
Gaudet, M.M.
Giles, G.G.
Glendon, G.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Greene, M.H.
Gronwald, J.
Guénel, P.
Haiman, C.A.
Hall, P.
Hamann, U.
He, W.
Heyworth, J.
Hogervorst, F.B.
Hollestelle, A.
Hoover, R.N.
Hopper, J.L.
Hulick, P.J.
Humphreys, K.
Imyanitov, E.N.
ABCTB Investigators,
HEBON Investigators,
BCFR Investigators,
Isaacs, C.
Jakimovska, M.
Jakubowska, A.
James, P.A.
Janavicius, R.
Jankowitz, R.C.
John, E.M.
Johnson, N.
Joseph, V.
Karlan, B.Y.
Khusnutdinova, E.
Kiiski, J.I.
Ko, Y.-.
Jones, M.E.
Konstantopoulou, I.
Kristensen, V.N.
Laitman, Y.
Lambrechts, D.
Lazaro, C.
Leslie, G.
Lester, J.
Lesueur, F.
Lindström, S.
Long, J.
Loud, J.T.
Lubiński, J.
Makalic, E.
Mannermaa, A.
Manoochehri, M.
Margolin, S.
Maurer, T.
Mavroudis, D.
McGuffog, L.
Meindl, A.
Menon, U.
Michailidou, K.
Miller, A.
Montagna, M.
Moreno, F.
Moserle, L.
Mulligan, A.M.
Nathanson, K.L.
Neuhausen, S.L.
Nevanlinna, H.
Nevelsteen, I.
Nielsen, F.C.
Nikitina-Zake, L.
Nussbaum, R.L.
Offit, K.
Olah, E.
Olopade, O.I.
Olsson, H.
Osorio, A.
Papp, J.
Park-Simon, T.-.
Parsons, M.T.
Pedersen, I.S.
Peixoto, A.
Peterlongo, P.
Pharoah, P.D.
Plaseska-Karanfilska, D.
Poppe, B.
Presneau, N.
Radice, P.
Rantala, J.
Rennert, G.
Risch, H.A.
Saloustros, E.
Sanden, K.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Sharma, P.
Shu, X.-.
Simard, J.
Singer, C.F.
Soucy, P.
Southey, M.C.
Spinelli, J.J.
Spurdle, A.B.
Stone, J.
Swerdlow, A.J.
Tapper, W.J.
Taylor, J.A.
Teixeira, M.R.
Terry, M.B.
Teulé, A.
Thomassen, M.
Thöne, K.
Thull, D.L.
Tischkowitz, M.
Toland, A.E.
Torres, D.
Truong, T.
Tung, N.
Vachon, C.M.
van Asperen, C.J.
van den Ouweland, A.M.
van Rensburg, E.J.
Vega, A.
Viel, A.
Wang, Q.
Wappenschmidt, B.
Weitzel, J.N.
Wendt, C.
Winqvist, R.
Yang, X.R.
Yannoukakos, D.
Ziogas, A.
Kraft, P.
Antoniou, A.C.
Zheng, W.
Easton, D.F.
Milne, R.L.
Beesley, J.
Chenevix-Trench, G.
(2019). Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat commun,
Vol.10
(1),
p. 1741.
show abstract
full text
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer..
Jiang, X.
Finucane, H.K.
Schumacher, F.R.
Schmit, S.L.
Tyrer, J.P.
Han, Y.
Michailidou, K.
Lesseur, C.
Kuchenbaecker, K.B.
Dennis, J.
Conti, D.V.
Casey, G.
Gaudet, M.M.
Huyghe, J.R.
Albanes, D.
Aldrich, M.C.
Andrew, A.S.
Andrulis, I.L.
Anton-Culver, H.
Antoniou, A.C.
Antonenkova, N.N.
Arnold, S.M.
Aronson, K.J.
Arun, B.K.
Bandera, E.V.
Barkardottir, R.B.
Barnes, D.R.
Batra, J.
Beckmann, M.W.
Benitez, J.
Benlloch, S.
Berchuck, A.
Berndt, S.I.
Bickeböller, H.
Bien, S.A.
Blomqvist, C.
Boccia, S.
Bogdanova, N.V.
Bojesen, S.E.
Bolla, M.K.
Brauch, H.
Brenner, H.
Brenton, J.D.
Brook, M.N.
Brunet, J.
Brunnström, H.
Buchanan, D.D.
Burwinkel, B.
Butzow, R.
Cadoni, G.
Caldés, T.
Caligo, M.A.
Campbell, I.
Campbell, P.T.
Cancel-Tassin, G.
Cannon-Albright, L.
Campa, D.
Caporaso, N.
Carvalho, A.L.
Chan, A.T.
Chang-Claude, J.
Chanock, S.J.
Chen, C.
Christiani, D.C.
Claes, K.B.
Claessens, F.
Clements, J.
Collée, J.M.
Correa, M.C.
Couch, F.J.
Cox, A.
Cunningham, J.M.
Cybulski, C.
Czene, K.
Daly, M.B.
deFazio, A.
Devilee, P.
Diez, O.
Gago-Dominguez, M.
Donovan, J.L.
Dörk, T.
Duell, E.J.
Dunning, A.M.
Dwek, M.
Eccles, D.M.
Edlund, C.K.
Edwards, D.R.
Ellberg, C.
Evans, D.G.
Fasching, P.A.
Ferris, R.L.
Liloglou, T.
Figueiredo, J.C.
Fletcher, O.
Fortner, R.T.
Fostira, F.
Franceschi, S.
Friedman, E.
Gallinger, S.J.
Ganz, P.A.
Garber, J.
García-Sáenz, J.A.
Gayther, S.A.
Giles, G.G.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
Goode, E.L.
Goodman, M.T.
Goodman, G.
Grankvist, K.
Greene, M.H.
Gronberg, H.
Gronwald, J.
Guénel, P.
Håkansson, N.
Hall, P.
Hamann, U.
Hamdy, F.C.
Hamilton, R.J.
Hampe, J.
Haugen, A.
Heitz, F.
Herrero, R.
Hillemanns, P.
Hoffmeister, M.
Høgdall, E.
Hong, Y.-.
Hopper, J.L.
Houlston, R.
Hulick, P.J.
Hunter, D.J.
Huntsman, D.G.
Idos, G.
Imyanitov, E.N.
Ingles, S.A.
Isaacs, C.
Jakubowska, A.
James, P.
Jenkins, M.A.
Johansson, M.
Johansson, M.
John, E.M.
Joshi, A.D.
Kaneva, R.
Karlan, B.Y.
Kelemen, L.E.
Kühl, T.
Khaw, K.-.
Khusnutdinova, E.
Kibel, A.S.
Kiemeney, L.A.
Kim, J.
Kjaer, S.K.
Knight, J.A.
Kogevinas, M.
Kote-Jarai, Z.
Koutros, S.
Kristensen, V.N.
Kupryjanczyk, J.
Lacko, M.
Lam, S.
Lambrechts, D.
Landi, M.T.
Lazarus, P.
Le, N.D.
Lee, E.
Lejbkowicz, F.
Lenz, H.-.
Leslie, G.
Lessel, D.
Lester, J.
Levine, D.A.
Li, L.
Li, C.I.
Lindblom, A.
Lindor, N.M.
Liu, G.
Loupakis, F.
Lubiński, J.
Maehle, L.
Maier, C.
Mannermaa, A.
Marchand, L.L.
Margolin, S.
May, T.
McGuffog, L.
Meindl, A.
Middha, P.
Miller, A.
Milne, R.L.
MacInnis, R.J.
Modugno, F.
Montagna, M.
Moreno, V.
Moysich, K.B.
Mucci, L.
Muir, K.
Mulligan, A.M.
Nathanson, K.L.
Neal, D.E.
Ness, A.R.
Neuhausen, S.L.
Nevanlinna, H.
Newcomb, P.A.
Newcomb, L.F.
Nielsen, F.C.
Nikitina-Zake, L.
Nordestgaard, B.G.
Nussbaum, R.L.
Offit, K.
Olah, E.
Olama, A.A.
Olopade, O.I.
Olshan, A.F.
Olsson, H.
Osorio, A.
Pandha, H.
Park, J.Y.
Pashayan, N.
Parsons, M.T.
Pejovic, T.
Penney, K.L.
Peters, W.H.
Phelan, C.M.
Phipps, A.I.
Plaseska-Karanfilska, D.
Pring, M.
Prokofyeva, D.
Radice, P.
Stefansson, K.
Ramus, S.J.
Raskin, L.
Rennert, G.
Rennert, H.S.
van Rensburg, E.J.
Riggan, M.J.
Risch, H.A.
Risch, A.
Roobol, M.J.
Rosenstein, B.S.
Rossing, M.A.
De Ruyck, K.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schabath, M.B.
Schleutker, J.
Schmidt, M.K.
Setiawan, V.W.
Shen, H.
Siegel, E.M.
Sieh, W.
Singer, C.F.
Slattery, M.L.
Sorensen, K.D.
Southey, M.C.
Spurdle, A.B.
Stanford, J.L.
Stevens, V.L.
Stintzing, S.
Stone, J.
Sundfeldt, K.
Sutphen, R.
Swerdlow, A.J.
Tajara, E.H.
Tangen, C.M.
Tardon, A.
Taylor, J.A.
Teare, M.D.
Teixeira, M.R.
Terry, M.B.
Terry, K.L.
Thibodeau, S.N.
Thomassen, M.
Bjørge, L.
Tischkowitz, M.
Toland, A.E.
Torres, D.
Townsend, P.A.
Travis, R.C.
Tung, N.
Tworoger, S.S.
Ulrich, C.M.
Usmani, N.
Vachon, C.M.
Van Nieuwenhuysen, E.
Vega, A.
Aguado-Barrera, M.E.
Wang, Q.
Webb, P.M.
Weinberg, C.R.
Weinstein, S.
Weissler, M.C.
Weitzel, J.N.
West, C.M.
White, E.
Whittemore, A.S.
Wichmann, H.-.
Wiklund, F.
Winqvist, R.
Wolk, A.
Woll, P.
Woods, M.
Wu, A.H.
Wu, X.
Yannoukakos, D.
Zheng, W.
Zienolddiny, S.
Ziogas, A.
Zorn, K.K.
Lane, J.M.
Saxena, R.
Thomas, D.
Hung, R.J.
Diergaarde, B.
McKay, J.
Peters, U.
Hsu, L.
García-Closas, M.
Eeles, R.A.
Chenevix-Trench, G.
Brennan, P.J.
Haiman, C.A.
Simard, J.
Easton, D.F.
Gruber, S.B.
Pharoah, P.D.
Price, A.L.
Pasaniuc, B.
Amos, C.I.
Kraft, P.
Lindström, S.
(2019). Shared heritability and functional enrichment across six solid cancers. Nat commun,
Vol.10
(1),
p. 431.
show abstract
full text
Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis..
Johansson, A.
Palli, D.
Masala, G.
Grioni, S.
Agnoli, C.
Tumino, R.
Giurdanella, M.C.
Fasanelli, F.
Sacerdote, C.
Panico, S.
Mattiello, A.
Polidoro, S.
Jones, M.E.
Schoemaker, M.J.
Orr, N.
Tomczyk, K.
Johnson, N.
Fletcher, O.
Perduca, V.
Baglietto, L.
Dugué, P.-.
Southey, M.C.
Giles, G.G.
English, D.R.
Milne, R.L.
Severi, G.
Ambatipudi, S.
Cuenin, C.
Chajès, V.
Romieu, I.
Herceg, Z.
Swerdlow, A.J.
Vineis, P.
Flanagan, J.M.
(2019). Epigenome-wide association study for lifetime estrogen exposure identifies an epigenetic signature associated with breast cancer risk. Clin epigenetics,
Vol.11
(1),
p. 66.
show abstract
full text
BACKGROUND: It is well established that estrogens and other hormonal factors influence breast cancer susceptibility. We hypothesized that a woman's total lifetime estrogen exposure accumulates changes in DNA methylation, detectable in the blood, which could be used in risk assessment for breast cancer. METHODS: An estimated lifetime estrogen exposure (ELEE) model was defined using epidemiological data from EPIC-Italy (n = 31,864). An epigenome-wide association study (EWAS) of ELEE was performed using existing Illumina HumanMethylation450K Beadchip (HM450K) methylation data obtained from EPIC-Italy blood DNA samples (n = 216). A methylation index (MI) of ELEE based on 31 CpG sites was developed using HM450K data from EPIC-Italy and the Generations Study and evaluated for association with breast cancer risk in an independent dataset from the Generations Study (n = 440 incident breast cancer cases matched to 440 healthy controls) using targeted bisulfite sequencing. Lastly, a meta-analysis was conducted including three additional cohorts, consisting of 1187 case-control pairs. RESULTS: We observed an estimated 5% increase in breast cancer risk per 1-year longer ELEE (OR = 1.05, 95% CI 1.04-1.07, P = 3 × 10-12) in EPIC-Italy. The EWAS identified 694 CpG sites associated with ELEE (FDR Q < 0.05). We report a DNA methylation index (MI) associated with breast cancer risk that is validated in the Generations Study targeted bisulfite sequencing data (ORQ4_vs_Q1 = 1.77, 95% CI 1.07-2.93, P = 0.027) and in the meta-analysis (ORQ4_vs_Q1 = 1.43, 95% CI 1.05-2.00, P = 0.024); however, the correlation between the MI and ELEE was not validated across study cohorts. CONCLUSION: We have identified a blood DNA methylation signature associated with breast cancer risk in this study. Further investigation is required to confirm the interaction between estrogen exposure and DNA methylation in the blood..
Colombo, M.
Lòpez-Perolio, I.
Meeks, H.D.
Caleca, L.
Parsons, M.T.
Li, H.
De Vecchi, G.
Tudini, E.
Foglia, C.
Mondini, P.
Manoukian, S.
Behar, R.
Garcia, E.B.
Meindl, A.
Montagna, M.
Niederacher, D.
Schmidt, A.Y.
Varesco, L.
Wappenschmidt, B.
Bolla, M.K.
Dennis, J.
Michailidou, K.
Wang, Q.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Beeghly-Fadel, A.
Benitez, J.
Boeckx, B.
Bogdanova, N.V.
Bojesen, S.E.
Bonanni, B.
Brauch, H.
Brenner, H.
Burwinkel, B.
Chang-Claude, J.
Conroy, D.M.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Devilee, P.
Dörk, T.
Eriksson, M.
Fasching, P.A.
Figueroa, J.
Fletcher, O.
Flyger, H.
Gabrielson, M.
García-Closas, M.
Giles, G.G.
González-Neira, A.
Guénel, P.
Haiman, C.A.
Hall, P.
Hamann, U.
Hartman, M.
Hauke, J.
Hollestelle, A.
Hopper, J.L.
Jakubowska, A.
Jung, A.
Kosma, V.-.
Lambrechts, D.
Le Marchand, L.
Lindblom, A.
Lubinski, J.
Mannermaa, A.
Margolin, S.
Miao, H.
Milne, R.L.
Neuhausen, S.L.
Nevanlinna, H.
Olson, J.E.
Peterlongo, P.
Peto, J.
Pylkäs, K.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Schneeweiss, A.
Schoemaker, M.J.
See, M.H.
Southey, M.C.
Swerdlow, A.
Teo, S.H.
Toland, A.E.
Tomlinson, I.
Truong, T.
van Asperen, C.J.
van den Ouweland, A.M.
van der Kolk, L.E.
Winqvist, R.
Yannoukakos, D.
Zheng, W.
kConFab/AOCS Investigators,
Dunning, A.M.
Easton, D.F.
Henderson, A.
Hogervorst, F.B.
Izatt, L.
Offitt, K.
Side, L.E.
van Rensburg, E.J.
Embrace, S.
Hebon, S.
McGuffog, L.
Antoniou, A.C.
Chenevix-Trench, G.
Spurdle, A.B.
Goldgar, D.E.
Hoya, M.D.
Radice, P.
(2018). The BRCA2 c 68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity. Hum mutat,
Vol.39
(5),
pp. 729-741.
show abstract
full text
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants..
Wu, L.
Shi, W.
Long, J.
Guo, X.
Michailidou, K.
Beesley, J.
Bolla, M.K.
Shu, X.-.
Lu, Y.
Cai, Q.
Al-Ejeh, F.
Rozali, E.
Wang, Q.
Dennis, J.
Li, B.
Zeng, C.
Feng, H.
Gusev, A.
Barfield, R.T.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Aronson, K.J.
Auer, P.L.
Barrdahl, M.
Baynes, C.
Beckmann, M.W.
Benitez, J.
Bermisheva, M.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Brinton, L.
Broberg, P.
Brucker, S.Y.
Burwinkel, B.
Caldés, T.
Canzian, F.
Carter, B.D.
Castelao, J.E.
Chang-Claude, J.
Chen, X.
Cheng, T.-.
Christiansen, H.
Clarke, C.L.
NBCS Collaborators,
Collée, M.
Cornelissen, S.
Couch, F.J.
Cox, D.
Cox, A.
Cross, S.S.
Cunningham, J.M.
Czene, K.
Daly, M.B.
Devilee, P.
Doheny, K.F.
Dörk, T.
Dos-Santos-Silva, I.
Dumont, M.
Dwek, M.
Eccles, D.M.
Eilber, U.
Eliassen, A.H.
Engel, C.
Eriksson, M.
Fachal, L.
Fasching, P.A.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Flyger, H.
Fritschi, L.
Gabrielson, M.
Gago-Dominguez, M.
Gapstur, S.M.
García-Closas, M.
Gaudet, M.M.
Ghoussaini, M.
Giles, G.G.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Guénel, P.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hall, P.
Hallberg, E.
Hamann, U.
Harrington, P.
Hein, A.
Hicks, B.
Hillemanns, P.
Hollestelle, A.
Hoover, R.N.
Hopper, J.L.
Huang, G.
Humphreys, K.
Hunter, D.J.
Jakubowska, A.
Janni, W.
John, E.M.
Johnson, N.
Jones, K.
Jones, M.E.
Jung, A.
Kaaks, R.
Kerin, M.J.
Khusnutdinova, E.
Kosma, V.-.
Kristensen, V.N.
Lambrechts, D.
Le Marchand, L.
Li, J.
Lindström, S.
Lissowska, J.
Lo, W.-.
Loibl, S.
Lubinski, J.
Luccarini, C.
Lux, M.P.
MacInnis, R.J.
Maishman, T.
Kostovska, I.M.
Mannermaa, A.
Manson, J.E.
Margolin, S.
Mavroudis, D.
Meijers-Heijboer, H.
Meindl, A.
Menon, U.
Meyer, J.
Mulligan, A.M.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Nielsen, S.F.
Nordestgaard, B.G.
Olopade, O.I.
Olson, J.E.
Olsson, H.
Peterlongo, P.
Peto, J.
Plaseska-Karanfilska, D.
Prentice, R.
Presneau, N.
Pylkäs, K.
Rack, B.
Radice, P.
Rahman, N.
Rennert, G.
Rennert, H.S.
Rhenius, V.
Romero, A.
Romm, J.
Rudolph, A.
Saloustros, E.
Sandler, D.P.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Schneeweiss, A.
Scott, R.J.
Scott, C.G.
Seal, S.
Shah, M.
Shrubsole, M.J.
Smeets, A.
Southey, M.C.
Spinelli, J.J.
Stone, J.
Surowy, H.
Swerdlow, A.J.
Tamimi, R.M.
Tapper, W.
Taylor, J.A.
Terry, M.B.
Tessier, D.C.
Thomas, A.
Thöne, K.
Tollenaar, R.A.
Torres, D.
Truong, T.
Untch, M.
Vachon, C.
Van Den Berg, D.
Vincent, D.
Waisfisz, Q.
Weinberg, C.R.
Wendt, C.
Whittemore, A.S.
Wildiers, H.
Willett, W.C.
Winqvist, R.
Wolk, A.
Xia, L.
Yang, X.R.
Ziogas, A.
Ziv, E.
kConFab/AOCS Investigators,
Dunning, A.M.
Pharoah, P.D.
Simard, J.
Milne, R.L.
Edwards, S.L.
Kraft, P.
Easton, D.F.
Chenevix-Trench, G.
Zheng, W.
(2018). A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat genet,
Vol.50
(7),
pp. 968-978.
show abstract
full text
The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10-6, including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology..
Baxter, J.S.
Leavy, O.C.
Dryden, N.H.
Maguire, S.
Johnson, N.
Fedele, V.
Simigdala, N.
Martin, L.-.
Andrews, S.
Wingett, S.W.
Assiotis, I.
Fenwick, K.
Chauhan, R.
Rust, A.G.
Orr, N.
Dudbridge, F.
Haider, S.
Fletcher, O.
(2018). Capture Hi-C identifies putative target genes at 33 breast cancer risk loci. Nat commun,
Vol.9
(1),
p. 1028.
show abstract
full text
Genome-wide association studies (GWAS) have identified approximately 100 breast cancer risk loci. Translating these findings into a greater understanding of the mechanisms that influence disease risk requires identification of the genes or non-coding RNAs that mediate these associations. Here, we use Capture Hi-C (CHi-C) to annotate 63 loci; we identify 110 putative target genes at 33 loci. To assess the support for these target genes in other data sources we test for associations between levels of expression and SNP genotype (eQTLs), disease-specific survival (DSS), and compare them with somatically mutated cancer genes. 22 putative target genes are eQTLs, 32 are associated with DSS and 14 are somatically mutated in breast, or other, cancers. Identifying the target genes at GWAS risk loci will lead to a greater understanding of the mechanisms that influence breast cancer risk and prognosis..
Sood, D.
Johnson, N.
Jain, P.
Siskos, A.P.
Bennett, M.
Gilham, C.
Busana, M.C.
Peto, J.
Dos-Santos-Silva, I.
Keun, H.C.
Fletcher, O.
(2017). CYP3A7*1C allele is associated with reduced levels of 2-hydroxylation pathway oestrogen metabolites. Br j cancer,
Vol.116
(3),
pp. 382-388.
show abstract
full text
BACKGROUND: Endogenous sex hormones are well-established risk factors for breast cancer; the contribution of specific oestrogen metabolites (EMs) and/or ratios of specific EMs is less clear. We have previously identified a CYP3A7*1C allele that is associated with lower urinary oestrone (E1) levels in premenopausal women. The purpose of this analysis was to determine whether this allele was associated with specific pathway EMs. METHODS: We measured successfully 12 EMs in mid-follicular phase urine samples from 30 CYP3A7*1C carriers and 30 non-carriers using HPLC-MS/MS. RESULTS: In addition to having lower urinary E1 levels, CYP3A7*1C carriers had significantly lower levels of four of the 2-hydroxylation pathway EMs that we measured (2-hydroxyestrone, P=1.1 × 10-12; 2-hydroxyestradiol, P=2.7 × 10-7; 2-methoxyestrone, P=1.9 × 10-12; and 2-methoxyestradiol, P=0.0009). By contrast, 16α-hydroxylation pathway EMs were slightly higher in carriers and significantly so for 17-epiestriol (P=0.002). CONCLUSIONS: The CYP3A7*1C allele is associated with a lower urinary E1 levels, a more pronounced reduction in 2-hydroxylation pathway EMs and a lower ratio of 2-hydroxylation:16α-hydroxylation EMs in premenopausal women. To further characterise the association between parent oestrogens, EMs and subsequent risk of breast cancer, characterisation of additional genetic variants that influence oestrogen metabolism and large prospective studies of a broad spectrum of EMs will be required..
Milne, R.L.
Kuchenbaecker, K.B.
Michailidou, K.
Beesley, J.
Kar, S.
Lindström, S.
Hui, S.
Lemaçon, A.
Soucy, P.
Dennis, J.
Jiang, X.
Rostamianfar, A.
Finucane, H.
Bolla, M.K.
McGuffog, L.
Wang, Q.
Aalfs, C.M.
ABCTB Investigators,
Adams, M.
Adlard, J.
Agata, S.
Ahmed, S.
Ahsan, H.
Aittomäki, K.
Al-Ejeh, F.
Allen, J.
Ambrosone, C.B.
Amos, C.I.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Arndt, V.
Arnold, N.
Aronson, K.J.
Auber, B.
Auer, P.L.
Ausems, M.G.
Azzollini, J.
Bacot, F.
Balmaña, J.
Barile, M.
Barjhoux, L.
Barkardottir, R.B.
Barrdahl, M.
Barnes, D.
Barrowdale, D.
Baynes, C.
Beckmann, M.W.
Benitez, J.
Bermisheva, M.
Bernstein, L.
Bignon, Y.-.
Blazer, K.R.
Blok, M.J.
Blomqvist, C.
Blot, W.
Bobolis, K.
Boeckx, B.
Bogdanova, N.V.
Bojesen, A.
Bojesen, S.E.
Bonanni, B.
Børresen-Dale, A.-.
Bozsik, A.
Bradbury, A.R.
Brand, J.S.
Brauch, H.
Brenner, H.
Bressac-de Paillerets, B.
Brewer, C.
Brinton, L.
Broberg, P.
Brooks-Wilson, A.
Brunet, J.
Brüning, T.
Burwinkel, B.
Buys, S.S.
Byun, J.
Cai, Q.
Caldés, T.
Caligo, M.A.
Campbell, I.
Canzian, F.
Caron, O.
Carracedo, A.
Carter, B.D.
Castelao, J.E.
Castera, L.
Caux-Moncoutier, V.
Chan, S.B.
Chang-Claude, J.
Chanock, S.J.
Chen, X.
Cheng, T.-.
Chiquette, J.
Christiansen, H.
Claes, K.B.
Clarke, C.L.
Conner, T.
Conroy, D.M.
Cook, J.
Cordina-Duverger, E.
Cornelissen, S.
Coupier, I.
Cox, A.
Cox, D.G.
Cross, S.S.
Cuk, K.
Cunningham, J.M.
Czene, K.
Daly, M.B.
Damiola, F.
Darabi, H.
Davidson, R.
De Leeneer, K.
Devilee, P.
Dicks, E.
Diez, O.
Ding, Y.C.
Ditsch, N.
Doheny, K.F.
Domchek, S.M.
Dorfling, C.M.
Dörk, T.
Dos-Santos-Silva, I.
Dubois, S.
Dugué, P.-.
Dumont, M.
Dunning, A.M.
Durcan, L.
Dwek, M.
Dworniczak, B.
Eccles, D.
Eeles, R.
Ehrencrona, H.
Eilber, U.
Ejlertsen, B.
Ekici, A.B.
Eliassen, A.H.
EMBRACE,
Engel, C.
Eriksson, M.
Fachal, L.
Faivre, L.
Fasching, P.A.
Faust, U.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Flyger, H.
Foulkes, W.D.
Friedman, E.
Fritschi, L.
Frost, D.
Gabrielson, M.
Gaddam, P.
Gammon, M.D.
Ganz, P.A.
Gapstur, S.M.
Garber, J.
Garcia-Barberan, V.
García-Sáenz, J.A.
Gaudet, M.M.
Gauthier-Villars, M.
Gehrig, A.
GEMO Study Collaborators,
Georgoulias, V.
Gerdes, A.-.
Giles, G.G.
Glendon, G.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Goodfellow, P.
Greene, M.H.
Alnæs, G.I.
Grip, M.
Gronwald, J.
Grundy, A.
Gschwantler-Kaulich, D.
Guénel, P.
Guo, Q.
Haeberle, L.
Hahnen, E.
Haiman, C.A.
Håkansson, N.
Hallberg, E.
Hamann, U.
Hamel, N.
Hankinson, S.
Hansen, T.V.
Harrington, P.
Hart, S.N.
Hartikainen, J.M.
Healey, C.S.
HEBON,
Hein, A.
Helbig, S.
Henderson, A.
Heyworth, J.
Hicks, B.
Hillemanns, P.
Hodgson, S.
Hogervorst, F.B.
Hollestelle, A.
Hooning, M.J.
Hoover, B.
Hopper, J.L.
Hu, C.
Huang, G.
Hulick, P.J.
Humphreys, K.
Hunter, D.J.
Imyanitov, E.N.
Isaacs, C.
Iwasaki, M.
Izatt, L.
Jakubowska, A.
James, P.
Janavicius, R.
Janni, W.
Jensen, U.B.
John, E.M.
Johnson, N.
Jones, K.
Jones, M.
Jukkola-Vuorinen, A.
Kaaks, R.
Kabisch, M.
Kaczmarek, K.
Kang, D.
Kast, K.
kConFab/AOCS Investigators,
Keeman, R.
Kerin, M.J.
Kets, C.M.
Keupers, M.
Khan, S.
Khusnutdinova, E.
Kiiski, J.I.
Kim, S.-.
Knight, J.A.
Konstantopoulou, I.
Kosma, V.-.
Kristensen, V.N.
Kruse, T.A.
Kwong, A.
Lænkholm, A.-.
Laitman, Y.
Lalloo, F.
Lambrechts, D.
Landsman, K.
Lasset, C.
Lazaro, C.
Le Marchand, L.
Lecarpentier, J.
Lee, A.
Lee, E.
Lee, J.W.
Lee, M.H.
Lejbkowicz, F.
Lesueur, F.
Li, J.
Lilyquist, J.
Lincoln, A.
Lindblom, A.
Lissowska, J.
Lo, W.-.
Loibl, S.
Long, J.
Loud, J.T.
Lubinski, J.
Luccarini, C.
Lush, M.
MacInnis, R.J.
Maishman, T.
Makalic, E.
Kostovska, I.M.
Malone, K.E.
Manoukian, S.
Manson, J.E.
Margolin, S.
Martens, J.W.
Martinez, M.E.
Matsuo, K.
Mavroudis, D.
Mazoyer, S.
McLean, C.
Meijers-Heijboer, H.
Menéndez, P.
Meyer, J.
Miao, H.
Miller, A.
Miller, N.
Mitchell, G.
Montagna, M.
Muir, K.
Mulligan, A.M.
Mulot, C.
Nadesan, S.
Nathanson, K.L.
NBSC Collaborators,
Neuhausen, S.L.
Nevanlinna, H.
Nevelsteen, I.
Niederacher, D.
Nielsen, S.F.
Nordestgaard, B.G.
Norman, A.
Nussbaum, R.L.
Olah, E.
Olopade, O.I.
Olson, J.E.
Olswold, C.
Ong, K.-.
Oosterwijk, J.C.
Orr, N.
Osorio, A.
Pankratz, V.S.
Papi, L.
Park-Simon, T.-.
Paulsson-Karlsson, Y.
Lloyd, R.
Pedersen, I.S.
Peissel, B.
Peixoto, A.
Perez, J.I.
Peterlongo, P.
Peto, J.
Pfeiler, G.
Phelan, C.M.
Pinchev, M.
Plaseska-Karanfilska, D.
Poppe, B.
Porteous, M.E.
Prentice, R.
Presneau, N.
Prokofieva, D.
Pugh, E.
Pujana, M.A.
Pylkäs, K.
Rack, B.
Radice, P.
Rahman, N.
Rantala, J.
Rappaport-Fuerhauser, C.
Rennert, G.
Rennert, H.S.
Rhenius, V.
Rhiem, K.
Richardson, A.
Rodriguez, G.C.
Romero, A.
Romm, J.
Rookus, M.A.
Rudolph, A.
Ruediger, T.
Saloustros, E.
Sanders, J.
Sandler, D.P.
Sangrajrang, S.
Sawyer, E.J.
Schmidt, D.F.
Schoemaker, M.J.
Schumacher, F.
Schürmann, P.
Schwentner, L.
Scott, C.
Scott, R.J.
Seal, S.
Senter, L.
Seynaeve, C.
Shah, M.
Sharma, P.
Shen, C.-.
Sheng, X.
Shimelis, H.
Shrubsole, M.J.
Shu, X.-.
Side, L.E.
Singer, C.F.
Sohn, C.
Southey, M.C.
Spinelli, J.J.
Spurdle, A.B.
Stegmaier, C.
Stoppa-Lyonnet, D.
Sukiennicki, G.
Surowy, H.
Sutter, C.
Swerdlow, A.
Szabo, C.I.
Tamimi, R.M.
Tan, Y.Y.
Taylor, J.A.
Tejada, M.-.
Tengström, M.
Teo, S.H.
Terry, M.B.
Tessier, D.C.
Teulé, A.
Thöne, K.
Thull, D.L.
Tibiletti, M.G.
Tihomirova, L.
Tischkowitz, M.
Toland, A.E.
Tollenaar, R.A.
Tomlinson, I.
Tong, L.
Torres, D.
Tranchant, M.
Truong, T.
Tucker, K.
Tung, N.
Tyrer, J.
Ulmer, H.-.
Vachon, C.
van Asperen, C.J.
Van Den Berg, D.
van den Ouweland, A.M.
van Rensburg, E.J.
Varesco, L.
Varon-Mateeva, R.
Vega, A.
Viel, A.
Vijai, J.
Vincent, D.
Vollenweider, J.
Walker, L.
Wang, Z.
Wang-Gohrke, S.
Wappenschmidt, B.
Weinberg, C.R.
Weitzel, J.N.
Wendt, C.
Wesseling, J.
Whittemore, A.S.
Wijnen, J.T.
Willett, W.
Winqvist, R.
Wolk, A.
Wu, A.H.
Xia, L.
Yang, X.R.
Yannoukakos, D.
Zaffaroni, D.
Zheng, W.
Zhu, B.
Ziogas, A.
Ziv, E.
Zorn, K.K.
Gago-Dominguez, M.
Mannermaa, A.
Olsson, H.
Teixeira, M.R.
Stone, J.
Offit, K.
Ottini, L.
Park, S.K.
Thomassen, M.
Hall, P.
Meindl, A.
Schmutzler, R.K.
Droit, A.
Bader, G.D.
Pharoah, P.D.
Couch, F.J.
Easton, D.F.
Kraft, P.
Chenevix-Trench, G.
García-Closas, M.
Schmidt, M.K.
Antoniou, A.C.
Simard, J.
(2017). Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat genet,
Vol.49
(12),
pp. 1767-1778.
show abstract
full text
Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer..
Fehringer, G.
Kraft, P.
Pharoah, P.D.
Eeles, R.A.
Chatterjee, N.
Schumacher, F.R.
Schildkraut, J.M.
Lindström, S.
Brennan, P.
Bickeböller, H.
Houlston, R.S.
Landi, M.T.
Caporaso, N.
Risch, A.
Amin Al Olama, A.
Berndt, S.I.
Giovannucci, E.L.
Grönberg, H.
Kote-Jarai, Z.
Ma, J.
Muir, K.
Stampfer, M.J.
Stevens, V.L.
Wiklund, F.
Willett, W.C.
Goode, E.L.
Permuth, J.B.
Risch, H.A.
Reid, B.M.
Bezieau, S.
Brenner, H.
Chan, A.T.
Chang-Claude, J.
Hudson, T.J.
Kocarnik, J.K.
Newcomb, P.A.
Schoen, R.E.
Slattery, M.L.
White, E.
Adank, M.A.
Ahsan, H.
Aittomäki, K.
Baglietto, L.
Blomquist, C.
Canzian, F.
Czene, K.
Dos-Santos-Silva, I.
Eliassen, A.H.
Figueroa, J.D.
Flesch-Janys, D.
Fletcher, O.
Garcia-Closas, M.
Gaudet, M.M.
Johnson, N.
Hall, P.
Hazra, A.
Hein, R.
Hofman, A.
Hopper, J.L.
Irwanto, A.
Johansson, M.
Kaaks, R.
Kibriya, M.G.
Lichtner, P.
Liu, J.
Lund, E.
Makalic, E.
Meindl, A.
Müller-Myhsok, B.
Muranen, T.A.
Nevanlinna, H.
Peeters, P.H.
Peto, J.
Prentice, R.L.
Rahman, N.
Sanchez, M.J.
Schmidt, D.F.
Schmutzler, R.K.
Southey, M.C.
Tamimi, R.
Travis, R.C.
Turnbull, C.
Uitterlinden, A.G.
Wang, Z.
Whittemore, A.S.
Yang, X.R.
Zheng, W.
Buchanan, D.D.
Casey, G.
Conti, D.V.
Edlund, C.K.
Gallinger, S.
Haile, R.W.
Jenkins, M.
Le Marchand, L.
Li, L.
Lindor, N.M.
Schmit, S.L.
Thibodeau, S.N.
Woods, M.O.
Rafnar, T.
Gudmundsson, J.
Stacey, S.N.
Stefansson, K.
Sulem, P.
Chen, Y.A.
Tyrer, J.P.
Christiani, D.C.
Wei, Y.
Shen, H.
Hu, Z.
Shu, X.-.
Shiraishi, K.
Takahashi, A.
Bossé, Y.
Obeidat, M.
Nickle, D.
Timens, W.
Freedman, M.L.
Li, Q.
Seminara, D.
Chanock, S.J.
Gong, J.
Peters, U.
Gruber, S.B.
Amos, C.I.
Sellers, T.A.
Easton, D.F.
Hunter, D.J.
Haiman, C.A.
Henderson, B.E.
Hung, R.J.
Ovarian Cancer Association Consortium (OCAC),
PRACTICAL Consortium,
Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON),
Colorectal Transdisciplinary (CORECT) Study,
African American Breast Cancer Consortium (AABC) and African Ancestry Prostate Cancer Consortium (AAPC),
(2016). Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer res,
Vol.76
(17),
pp. 5103-5114.
show abstract
full text
Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR..
Meeks, H.D.
Song, H.
Michailidou, K.
Bolla, M.K.
Dennis, J.
Wang, Q.
Barrowdale, D.
Frost, D.
EMBRACE,
McGuffog, L.
Ellis, S.
Feng, B.
Buys, S.S.
Hopper, J.L.
Southey, M.C.
Tesoriero, A.
kConFab Investigators,
James, P.A.
Bruinsma, F.
Campbell, I.G.
Australia Ovarian Cancer Study Group,
Broeks, A.
Schmidt, M.K.
Hogervorst, F.B.
HEBON,
Beckman, M.W.
Fasching, P.A.
Fletcher, O.
Johnson, N.
Sawyer, E.J.
Riboli, E.
Banerjee, S.
Menon, U.
Tomlinson, I.
Burwinkel, B.
Hamann, U.
Marme, F.
Rudolph, A.
Janavicius, R.
Tihomirova, L.
Tung, N.
Garber, J.
Cramer, D.
Terry, K.L.
Poole, E.M.
Tworoger, S.S.
Dorfling, C.M.
van Rensburg, E.J.
Godwin, A.K.
Guénel, P.
Truong, T.
GEMO Study Collaborators,
Stoppa-Lyonnet, D.
Damiola, F.
Mazoyer, S.
Sinilnikova, O.M.
Isaacs, C.
Maugard, C.
Bojesen, S.E.
Flyger, H.
Gerdes, A.-.
Hansen, T.V.
Jensen, A.
Kjaer, S.K.
Hogdall, C.
Hogdall, E.
Pedersen, I.S.
Thomassen, M.
Benitez, J.
González-Neira, A.
Osorio, A.
Hoya, M.D.
Segura, P.P.
Diez, O.
Lazaro, C.
Brunet, J.
Anton-Culver, H.
Eunjung, L.
John, E.M.
Neuhausen, S.L.
Ding, Y.C.
Castillo, D.
Weitzel, J.N.
Ganz, P.A.
Nussbaum, R.L.
Chan, S.B.
Karlan, B.Y.
Lester, J.
Wu, A.
Gayther, S.
Ramus, S.J.
Sieh, W.
Whittermore, A.S.
Monteiro, A.N.
Phelan, C.M.
Terry, M.B.
Piedmonte, M.
Offit, K.
Robson, M.
Levine, D.
Moysich, K.B.
Cannioto, R.
Olson, S.H.
Daly, M.B.
Nathanson, K.L.
Domchek, S.M.
Lu, K.H.
Liang, D.
Hildebrant, M.A.
Ness, R.
Modugno, F.
Pearce, L.
Goodman, M.T.
Thompson, P.J.
Brenner, H.
Butterbach, K.
Meindl, A.
Hahnen, E.
Wappenschmidt, B.
Brauch, H.
Brüning, T.
Blomqvist, C.
Khan, S.
Nevanlinna, H.
Pelttari, L.M.
Aittomäki, K.
Butzow, R.
Bogdanova, N.V.
Dörk, T.
Lindblom, A.
Margolin, S.
Rantala, J.
Kosma, V.-.
Mannermaa, A.
Lambrechts, D.
Neven, P.
Claes, K.B.
Maerken, T.V.
Chang-Claude, J.
Flesch-Janys, D.
Heitz, F.
Varon-Mateeva, R.
Peterlongo, P.
Radice, P.
Viel, A.
Barile, M.
Peissel, B.
Manoukian, S.
Montagna, M.
Oliani, C.
Peixoto, A.
Teixeira, M.R.
Collavoli, A.
Hallberg, E.
Olson, J.E.
Goode, E.L.
Hart, S.N.
Shimelis, H.
Cunningham, J.M.
Giles, G.G.
Milne, R.L.
Healey, S.
Tucker, K.
Haiman, C.A.
Henderson, B.E.
Goldberg, M.S.
Tischkowitz, M.
Simard, J.
Soucy, P.
Eccles, D.M.
Le, N.
Borresen-Dale, A.-.
Kristensen, V.
Salvesen, H.B.
Bjorge, L.
Bandera, E.V.
Risch, H.
Zheng, W.
Beeghly-Fadiel, A.
Cai, H.
Pylkäs, K.
Tollenaar, R.A.
Ouweland, A.M.
Andrulis, I.L.
Knight, J.A.
OCGN,
Narod, S.
Devilee, P.
Winqvist, R.
Figueroa, J.
Greene, M.H.
Mai, P.L.
Loud, J.T.
García-Closas, M.
Schoemaker, M.J.
Czene, K.
Darabi, H.
McNeish, I.
Siddiquil, N.
Glasspool, R.
Kwong, A.
Park, S.K.
Teo, S.H.
Yoon, S.-.
Matsuo, K.
Hosono, S.
Woo, Y.L.
Gao, Y.-.
Foretova, L.
Singer, C.F.
Rappaport-Feurhauser, C.
Friedman, E.
Laitman, Y.
Rennert, G.
Imyanitov, E.N.
Hulick, P.J.
Olopade, O.I.
Senter, L.
Olah, E.
Doherty, J.A.
Schildkraut, J.
Koppert, L.B.
Kiemeney, L.A.
Massuger, L.F.
Cook, L.S.
Pejovic, T.
Li, J.
Borg, A.
Öfverholm, A.
Rossing, M.A.
Wentzensen, N.
Henriksson, K.
Cox, A.
Cross, S.S.
Pasini, B.J.
Shah, M.
Kabisch, M.
Torres, D.
Jakubowska, A.
Lubinski, J.
Gronwald, J.
Agnarsson, B.A.
Kupryjanczyk, J.
Moes-Sosnowska, J.
Fostira, F.
Konstantopoulou, I.
Slager, S.
Jones, M.
PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations in the genome,
Antoniou, A.C.
Berchuck, A.
Swerdlow, A.
Chenevix-Trench, G.
Dunning, A.M.
Pharoah, P.D.
Hall, P.
Easton, D.F.
Couch, F.J.
Spurdle, A.B.
Goldgar, D.E.
(2016). BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. J natl cancer inst,
Vol.108
(2).
show abstract
BACKGROUND: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. METHODS: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. RESULTS: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. CONCLUSIONS: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations..
Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2,
Hollestelle, A.
van der Baan, F.H.
Berchuck, A.
Johnatty, S.E.
Aben, K.K.
Agnarsson, B.A.
Aittomäki, K.
Alducci, E.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Antoniou, A.C.
Apicella, C.
Arndt, V.
Arnold, N.
Arun, B.K.
Arver, B.
Ashworth, A.
Australian Ovarian Cancer Study Group,
Baglietto, L.
Balleine, R.
Bandera, E.V.
Barrowdale, D.
Bean, Y.T.
Beckmann, L.
Beckmann, M.W.
Benitez, J.
Berger, A.
Berger, R.
Beuselinck, B.
Bisogna, M.
Bjorge, L.
Blomqvist, C.
Bogdanova, N.V.
Bojesen, A.
Bojesen, S.E.
Bolla, M.K.
Bonanni, B.
Brand, J.S.
Brauch, H.
Breast Cancer Family Register,
Brenner, H.
Brinton, L.
Brooks-Wilson, A.
Bruinsma, F.
Brunet, J.
Brüning, T.
Budzilowska, A.
Bunker, C.H.
Burwinkel, B.
Butzow, R.
Buys, S.S.
Caligo, M.A.
Campbell, I.
Carter, J.
Chang-Claude, J.
Chanock, S.J.
Claes, K.B.
Collée, J.M.
Cook, L.S.
Couch, F.J.
Cox, A.
Cramer, D.
Cross, S.S.
Cunningham, J.M.
Cybulski, C.
Czene, K.
Damiola, F.
Dansonka-Mieszkowska, A.
Darabi, H.
de la Hoya, M.
deFazio, A.
Dennis, J.
Devilee, P.
Dicks, E.M.
Diez, O.
Doherty, J.A.
Domchek, S.M.
Dorfling, C.M.
Dörk, T.
Silva, I.D.
du Bois, A.
Dumont, M.
Dunning, A.M.
Duran, M.
Easton, D.F.
Eccles, D.
Edwards, R.P.
Ehrencrona, H.
Ejlertsen, B.
Ekici, A.B.
Ellis, S.D.
EMBRACE,
Engel, C.
Eriksson, M.
Fasching, P.A.
Feliubadalo, L.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Fontaine, A.
Fortuzzi, S.
Fostira, F.
Fridley, B.L.
Friebel, T.
Friedman, E.
Friel, G.
Frost, D.
Garber, J.
García-Closas, M.
Gayther, S.A.
GEMO Study Collaborators,
GENICA Network,
Gentry-Maharaj, A.
Gerdes, A.-.
Giles, G.G.
Glasspool, R.
Glendon, G.
Godwin, A.K.
Goodman, M.T.
Gore, M.
Greene, M.H.
Grip, M.
Gronwald, J.
Gschwantler Kaulich, D.
Guénel, P.
Guzman, S.R.
Haeberle, L.
Haiman, C.A.
Hall, P.
Halverson, S.L.
Hamann, U.
Hansen, T.V.
Harter, P.
Hartikainen, J.M.
Healey, S.
HEBON,
Hein, A.
Heitz, F.
Henderson, B.E.
Herzog, J.
T Hildebrandt, M.A.
Høgdall, C.K.
Høgdall, E.
Hogervorst, F.B.
Hopper, J.L.
Humphreys, K.
Huzarski, T.
Imyanitov, E.N.
Isaacs, C.
Jakubowska, A.
Janavicius, R.
Jaworska, K.
Jensen, A.
Jensen, U.B.
Johnson, N.
Jukkola-Vuorinen, A.
Kabisch, M.
Karlan, B.Y.
Kataja, V.
Kauff, N.
KConFab Investigators,
Kelemen, L.E.
Kerin, M.J.
Kiemeney, L.A.
Kjaer, S.K.
Knight, J.A.
Knol-Bout, J.P.
Konstantopoulou, I.
Kosma, V.-.
Krakstad, C.
Kristensen, V.
Kuchenbaecker, K.B.
Kupryjanczyk, J.
Laitman, Y.
Lambrechts, D.
Lambrechts, S.
Larson, M.C.
Lasa, A.
Laurent-Puig, P.
Lazaro, C.
Le, N.D.
Le Marchand, L.
Leminen, A.
Lester, J.
Levine, D.A.
Li, J.
Liang, D.
Lindblom, A.
Lindor, N.
Lissowska, J.
Long, J.
Lu, K.H.
Lubinski, J.
Lundvall, L.
Lurie, G.
Mai, P.L.
Mannermaa, A.
Margolin, S.
Mariette, F.
Marme, F.
Martens, J.W.
Massuger, L.F.
Maugard, C.
Mazoyer, S.
McGuffog, L.
McGuire, V.
McLean, C.
McNeish, I.
Meindl, A.
Menegaux, F.
Menéndez, P.
Menkiszak, J.
Menon, U.
Mensenkamp, A.R.
Miller, N.
Milne, R.L.
Modugno, F.
Montagna, M.
Moysich, K.B.
Müller, H.
Mulligan, A.M.
Muranen, T.A.
Narod, S.A.
Nathanson, K.L.
Ness, R.B.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Nielsen, F.C.
Nielsen, S.F.
Nordestgaard, B.G.
Nussbaum, R.L.
Odunsi, K.
Offit, K.
Olah, E.
Olopade, O.I.
Olson, J.E.
Olson, S.H.
Oosterwijk, J.C.
Orlow, I.
Orr, N.
Orsulic, S.
Osorio, A.
Ottini, L.
Paul, J.
Pearce, C.L.
Pedersen, I.S.
Peissel, B.
Pejovic, T.
Pelttari, L.M.
Perkins, J.
Permuth-Wey, J.
Peterlongo, P.
Peto, J.
Phelan, C.M.
Phillips, K.-.
Piedmonte, M.
Pike, M.C.
Platte, R.
Plisiecka-Halasa, J.
Poole, E.M.
Poppe, B.
Pylkäs, K.
Radice, P.
Ramus, S.J.
Rebbeck, T.R.
Reed, M.W.
Rennert, G.
Risch, H.A.
Robson, M.
Rodriguez, G.C.
Romero, A.
Rossing, M.A.
Rothstein, J.H.
Rudolph, A.
Runnebaum, I.
Salani, R.
Salvesen, H.B.
Sawyer, E.J.
Schildkraut, J.M.
Schmidt, M.K.
Schmutzler, R.K.
Schneeweiss, A.
Schoemaker, M.J.
Schrauder, M.G.
Schumacher, F.
Schwaab, I.
Scuvera, G.
Sellers, T.A.
Severi, G.
Seynaeve, C.M.
Shah, M.
Shrubsole, M.
Siddiqui, N.
Sieh, W.
Simard, J.
Singer, C.F.
Sinilnikova, O.M.
Smeets, D.
Sohn, C.
Soller, M.
Song, H.
Soucy, P.
Southey, M.C.
Stegmaier, C.
Stoppa-Lyonnet, D.
Sucheston, L.
SWE-BRCA,
Swerdlow, A.
Tangen, I.L.
Tea, M.-.
Teixeira, M.R.
Terry, K.L.
Terry, M.B.
Thomassen, M.
Thompson, P.J.
Tihomirova, L.
Tischkowitz, M.
Toland, A.E.
Tollenaar, R.A.
Tomlinson, I.
Torres, D.
Truong, T.
Tsimiklis, H.
Tung, N.
Tworoger, S.S.
Tyrer, J.P.
Vachon, C.M.
Van 't Veer, L.J.
van Altena, A.M.
Van Asperen, C.J.
van den Berg, D.
van den Ouweland, A.M.
van Doorn, H.C.
Van Nieuwenhuysen, E.
van Rensburg, E.J.
Vergote, I.
Verhoef, S.
Vierkant, R.A.
Vijai, J.
Vitonis, A.F.
von Wachenfeldt, A.
Walsh, C.
Wang, Q.
Wang-Gohrke, S.
Wappenschmidt, B.
Weischer, M.
Weitzel, J.N.
Weltens, C.
Wentzensen, N.
Whittemore, A.S.
Wilkens, L.R.
Winqvist, R.
Wu, A.H.
Wu, X.
Yang, H.P.
Zaffaroni, D.
Pilar Zamora, M.
Zheng, W.
Ziogas, A.
Chenevix-Trench, G.
Pharoah, P.D.
Rookus, M.A.
Hooning, M.J.
Goode, E.L.
(2016). No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecol oncol,
Vol.141
(2),
pp. 386-401.
show abstract
full text
OBJECTIVE: Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. METHODS: Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). RESULTS: We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. CONCLUSIONS: rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers..
Zhao, Z.
Wen, W.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Zhang, B.
Long, J.
Shu, X.-.
Schmidt, M.K.
Milne, R.L.
García-Closas, M.
Chang-Claude, J.
Lindstrom, S.
Bojesen, S.E.
Ahsan, H.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Beeghly-Fadiel, A.
Benitez, J.
Blomqvist, C.
Bogdanova, N.V.
Børresen-Dale, A.-.
Brand, J.
Brauch, H.
Brenner, H.
Burwinkel, B.
Cai, Q.
Casey, G.
Chenevix-Trench, G.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Dörk, T.
Dumont, M.
Fasching, P.A.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Flyger, H.
Fostira, F.
Gammon, M.
Giles, G.G.
Guénel, P.
Haiman, C.A.
Hamann, U.
Harrington, P.
Hartman, M.
Hooning, M.J.
Hopper, J.L.
Jakubowska, A.
Jasmine, F.
John, E.M.
Johnson, N.
Kabisch, M.
Khan, S.
Kibriya, M.
Knight, J.A.
Kosma, V.-.
Kriege, M.
Kristensen, V.
Le Marchand, L.
Lee, E.
Li, J.
Lindblom, A.
Lophatananon, A.
Luben, R.
Lubinski, J.
Malone, K.E.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Marme, F.
McLean, C.
Meijers-Heijboer, H.
Meindl, A.
Miao, H.
Muir, K.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Olson, J.E.
Perkins, B.
Peterlongo, P.
Phillips, K.-.
Pylkäs, K.
Rudolph, A.
Santella, R.
Sawyer, E.J.
Schmutzler, R.K.
Schoemaker, M.
Shah, M.
Shrubsole, M.
Southey, M.C.
Swerdlow, A.J.
Toland, A.E.
Tomlinson, I.
Torres, D.
Truong, T.
Ursin, G.
Van Der Luijt, R.B.
Verhoef, S.
Wang-Gohrke, S.
Whittemore, A.S.
Winqvist, R.
Pilar Zamora, M.
Zhao, H.
Dunning, A.M.
Simard, J.
Hall, P.
Kraft, P.
Pharoah, P.
Hunter, D.
Easton, D.F.
Zheng, W.
(2016). Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer causes control,
Vol.27
(5),
pp. 679-693.
show abstract
full text
PURPOSE: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. METHODS: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. RESULTS: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92-0.95, p = 4.13E-13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02-1.06, p = 1.26E-05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95-0.99, p = 8.05E-04). CONCLUSIONS: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk..
Easton, D.F.
Lesueur, F.
Decker, B.
Michailidou, K.
Li, J.
Allen, J.
Luccarini, C.
Pooley, K.A.
Shah, M.
Bolla, M.K.
Wang, Q.
Dennis, J.
Ahmad, J.
Thompson, E.R.
Damiola, F.
Pertesi, M.
Voegele, C.
Mebirouk, N.
Robinot, N.
Durand, G.
Forey, N.
Luben, R.N.
Ahmed, S.
Aittomäki, K.
Anton-Culver, H.
Arndt, V.
Australian Ovarian Cancer Study Group,
Baynes, C.
Beckman, M.W.
Benitez, J.
Van Den Berg, D.
Blot, W.J.
Bogdanova, N.V.
Bojesen, S.E.
Brenner, H.
Chang-Claude, J.
Chia, K.S.
Choi, J.-.
Conroy, D.M.
Cox, A.
Cross, S.S.
Czene, K.
Darabi, H.
Devilee, P.
Eriksson, M.
Fasching, P.A.
Figueroa, J.
Flyger, H.
Fostira, F.
García-Closas, M.
Giles, G.G.
Glendon, G.
González-Neira, A.
Guénel, P.
Haiman, C.A.
Hall, P.
Hart, S.N.
Hartman, M.
Hooning, M.J.
Hsiung, C.-.
Ito, H.
Jakubowska, A.
James, P.A.
John, E.M.
Johnson, N.
Jones, M.
Kabisch, M.
Kang, D.
kConFab Investigators,
Kosma, V.-.
Kristensen, V.
Lambrechts, D.
Li, N.
Lifepool Investigators,
Lindblom, A.
Long, J.
Lophatananon, A.
Lubinski, J.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Matsuo, K.
Meindl, A.
Mitchell, G.
Muir, K.
NBCS Investigators,
Nevelsteen, I.
van den Ouweland, A.
Peterlongo, P.
Phuah, S.Y.
Pylkäs, K.
Rowley, S.M.
Sangrajrang, S.
Schmutzler, R.K.
Shen, C.-.
Shu, X.-.
Southey, M.C.
Surowy, H.
Swerdlow, A.
Teo, S.H.
Tollenaar, R.A.
Tomlinson, I.
Torres, D.
Truong, T.
Vachon, C.
Verhoef, S.
Wong-Brown, M.
Zheng, W.
Zheng, Y.
Nevanlinna, H.
Scott, R.J.
Andrulis, I.L.
Wu, A.H.
Hopper, J.L.
Couch, F.J.
Winqvist, R.
Burwinkel, B.
Sawyer, E.J.
Schmidt, M.K.
Rudolph, A.
Dörk, T.
Brauch, H.
Hamann, U.
Neuhausen, S.L.
Milne, R.L.
Fletcher, O.
Pharoah, P.D.
Campbell, I.G.
Dunning, A.M.
Le Calvez-Kelm, F.
Goldgar, D.E.
Tavtigian, S.V.
Chenevix-Trench, G.
(2016). No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J med genet,
Vol.53
(5),
pp. 298-309.
show abstract
full text
BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels..
Ghoussaini, M.
French, J.D.
Michailidou, K.
Nord, S.
Beesley, J.
Canisus, S.
Hillman, K.M.
Kaufmann, S.
Sivakumaran, H.
Moradi Marjaneh, M.
Lee, J.S.
Dennis, J.
Bolla, M.K.
Wang, Q.
Dicks, E.
Milne, R.L.
Hopper, J.L.
Southey, M.C.
Schmidt, M.K.
Broeks, A.
Muir, K.
Lophatananon, A.
Fasching, P.A.
Beckmann, M.W.
Fletcher, O.
Johnson, N.
Sawyer, E.J.
Tomlinson, I.
Burwinkel, B.
Marme, F.
Guénel, P.
Truong, T.
Bojesen, S.E.
Flyger, H.
Benitez, J.
González-Neira, A.
Alonso, M.R.
Pita, G.
Neuhausen, S.L.
Anton-Culver, H.
Brenner, H.
Arndt, V.
Meindl, A.
Schmutzler, R.K.
Brauch, H.
Hamann, U.
Tessier, D.C.
Vincent, D.
Nevanlinna, H.
Khan, S.
Matsuo, K.
Ito, H.
Dörk, T.
Bogdanova, N.V.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kosma, V.-.
kConFab/AOCS Investigators,
Wu, A.H.
Van Den Berg, D.
Lambrechts, D.
Floris, G.
Chang-Claude, J.
Rudolph, A.
Radice, P.
Barile, M.
Couch, F.J.
Hallberg, E.
Giles, G.G.
Haiman, C.A.
Le Marchand, L.
Goldberg, M.S.
Teo, S.H.
Yip, C.H.
Borresen-Dale, A.-.
NBCS Collaborators,
Zheng, W.
Cai, Q.
Winqvist, R.
Pylkäs, K.
Andrulis, I.L.
Devilee, P.
Tollenaar, R.A.
García-Closas, M.
Figueroa, J.
Hall, P.
Czene, K.
Brand, J.S.
Darabi, H.
Eriksson, M.
Hooning, M.J.
Koppert, L.B.
Li, J.
Shu, X.-.
Zheng, Y.
Cox, A.
Cross, S.S.
Shah, M.
Rhenius, V.
Choi, J.-.
Kang, D.
Hartman, M.
Chia, K.S.
Kabisch, M.
Torres, D.
Luccarini, C.
Conroy, D.M.
Jakubowska, A.
Lubinski, J.
Sangrajrang, S.
Brennan, P.
Olswold, C.
Slager, S.
Shen, C.-.
Hou, M.-.
Swerdlow, A.
Schoemaker, M.J.
Simard, J.
Pharoah, P.D.
Kristensen, V.
Chenevix-Trench, G.
Easton, D.F.
Dunning, A.M.
Edwards, S.L.
(2016). Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. Am j hum genet,
Vol.99
(4),
pp. 903-911.
show abstract
full text
Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis..
Darabi, H.
Beesley, J.
Droit, A.
Kar, S.
Nord, S.
Moradi Marjaneh, M.
Soucy, P.
Michailidou, K.
Ghoussaini, M.
Fues Wahl, H.
Bolla, M.K.
Wang, Q.
Dennis, J.
Alonso, M.R.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Benitez, J.
Bogdanova, N.V.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Broeks, A.
Brüning, T.
Burwinkel, B.
Chang-Claude, J.
Choi, J.-.
Conroy, D.M.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Devilee, P.
Dörk, T.
Easton, D.F.
Fasching, P.A.
Figueroa, J.
Fletcher, O.
Flyger, H.
Galle, E.
García-Closas, M.
Giles, G.G.
Goldberg, M.S.
González-Neira, A.
Guénel, P.
Haiman, C.A.
Hallberg, E.
Hamann, U.
Hartman, M.
Hollestelle, A.
Hopper, J.L.
Ito, H.
Jakubowska, A.
Johnson, N.
Kang, D.
Khan, S.
Kosma, V.-.
Kriege, M.
Kristensen, V.
Lambrechts, D.
Le Marchand, L.
Lee, S.C.
Lindblom, A.
Lophatananon, A.
Lubinski, J.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Matsuo, K.
Mayes, R.
McKay, J.
Meindl, A.
Milne, R.L.
Muir, K.
Neuhausen, S.L.
Nevanlinna, H.
Olswold, C.
Orr, N.
Peterlongo, P.
Pita, G.
Pylkäs, K.
Rudolph, A.
Sangrajrang, S.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Seynaeve, C.
Shah, M.
Shen, C.-.
Shu, X.-.
Southey, M.C.
Stram, D.O.
Surowy, H.
Swerdlow, A.
Teo, S.H.
Tessier, D.C.
Tomlinson, I.
Torres, D.
Truong, T.
Vachon, C.M.
Vincent, D.
Winqvist, R.
Wu, A.H.
Wu, P.-.
Yip, C.H.
Zheng, W.
Pharoah, P.D.
Hall, P.
Edwards, S.L.
Simard, J.
French, J.D.
Chenevix-Trench, G.
Dunning, A.M.
(2016). Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Sci rep,
Vol.6,
p. 32512.
show abstract
full text
Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90-0.94; P = 8.96 × 10(-15))) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10(-09), r(2) = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10(-11), r(2) = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus..
Lawrenson, K.
Kar, S.
McCue, K.
Kuchenbaeker, K.
Michailidou, K.
Tyrer, J.
Beesley, J.
Ramus, S.J.
Li, Q.
Delgado, M.K.
Lee, J.M.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Arun, B.K.
Arver, B.
Bandera, E.V.
Barile, M.
Barkardottir, R.B.
Barrowdale, D.
Beckmann, M.W.
Benitez, J.
Berchuck, A.
Bisogna, M.
Bjorge, L.
Blomqvist, C.
Blot, W.
Bogdanova, N.
Bojesen, A.
Bojesen, S.E.
Bolla, M.K.
Bonanni, B.
Børresen-Dale, A.-.
Brauch, H.
Brennan, P.
Brenner, H.
Bruinsma, F.
Brunet, J.
Buhari, S.A.
Burwinkel, B.
Butzow, R.
Buys, S.S.
Cai, Q.
Caldes, T.
Campbell, I.
Canniotto, R.
Chang-Claude, J.
Chiquette, J.
Choi, J.-.
Claes, K.B.
GEMO Study Collaborators,
Cook, L.S.
Cox, A.
Cramer, D.W.
Cross, S.S.
Cybulski, C.
Czene, K.
Daly, M.B.
Damiola, F.
Dansonka-Mieszkowska, A.
Darabi, H.
Dennis, J.
Devilee, P.
Diez, O.
Doherty, J.A.
Domchek, S.M.
Dorfling, C.M.
Dörk, T.
Dumont, M.
Ehrencrona, H.
Ejlertsen, B.
Ellis, S.
EMBRACE,
Engel, C.
Lee, E.
Evans, D.G.
Fasching, P.A.
Feliubadalo, L.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Flyger, H.
Foretova, L.
Fostira, F.
Foulkes, W.D.
Fridley, B.L.
Friedman, E.
Frost, D.
Gambino, G.
Ganz, P.A.
Garber, J.
García-Closas, M.
Gentry-Maharaj, A.
Ghoussaini, M.
Giles, G.G.
Glasspool, R.
Godwin, A.K.
Goldberg, M.S.
Goldgar, D.E.
González-Neira, A.
Goode, E.L.
Goodman, M.T.
Greene, M.H.
Gronwald, J.
Guénel, P.
Haiman, C.A.
Hall, P.
Hallberg, E.
Hamann, U.
Hansen, T.V.
Harrington, P.A.
Hartman, M.
Hassan, N.
Healey, S.
Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON),
Heitz, F.
Herzog, J.
Høgdall, E.
Høgdall, C.K.
Hogervorst, F.B.
Hollestelle, A.
Hopper, J.L.
Hulick, P.J.
Huzarski, T.
Imyanitov, E.N.
KConFab Investigators,
Australian Ovarian Cancer Study Group,
Isaacs, C.
Ito, H.
Jakubowska, A.
Janavicius, R.
Jensen, A.
John, E.M.
Johnson, N.
Kabisch, M.
Kang, D.
Kapuscinski, M.
Karlan, B.Y.
Khan, S.
Kiemeney, L.A.
Kjaer, S.K.
Knight, J.A.
Konstantopoulou, I.
Kosma, V.-.
Kristensen, V.
Kupryjanczyk, J.
Kwong, A.
de la Hoya, M.
Laitman, Y.
Lambrechts, D.
Le, N.
De Leeneer, K.
Lester, J.
Levine, D.A.
Li, J.
Lindblom, A.
Long, J.
Lophatananon, A.
Loud, J.T.
Lu, K.
Lubinski, J.
Mannermaa, A.
Manoukian, S.
Le Marchand, L.
Margolin, S.
Marme, F.
Massuger, L.F.
Matsuo, K.
Mazoyer, S.
McGuffog, L.
McLean, C.
McNeish, I.
Meindl, A.
Menon, U.
Mensenkamp, A.R.
Milne, R.L.
Montagna, M.
Moysich, K.B.
Muir, K.
Mulligan, A.M.
Nathanson, K.L.
Ness, R.B.
Neuhausen, S.L.
Nevanlinna, H.
Nord, S.
Nussbaum, R.L.
Odunsi, K.
Offit, K.
Olah, E.
Olopade, O.I.
Olson, J.E.
Olswold, C.
O'Malley, D.
Orlow, I.
Orr, N.
Osorio, A.
Park, S.K.
Pearce, C.L.
Pejovic, T.
Peterlongo, P.
Pfeiler, G.
Phelan, C.M.
Poole, E.M.
Pylkäs, K.
Radice, P.
Rantala, J.
Rashid, M.U.
Rennert, G.
Rhenius, V.
Rhiem, K.
Risch, H.A.
Rodriguez, G.
Rossing, M.A.
Rudolph, A.
Salvesen, H.B.
Sangrajrang, S.
Sawyer, E.J.
Schildkraut, J.M.
Schmidt, M.K.
Schmutzler, R.K.
Sellers, T.A.
Seynaeve, C.
Shah, M.
Shen, C.-.
Shu, X.-.
Sieh, W.
Singer, C.F.
Sinilnikova, O.M.
Slager, S.
Song, H.
Soucy, P.
Southey, M.C.
Stenmark-Askmalm, M.
Stoppa-Lyonnet, D.
Sutter, C.
Swerdlow, A.
Tchatchou, S.
Teixeira, M.R.
Teo, S.H.
Terry, K.L.
Terry, M.B.
Thomassen, M.
Tibiletti, M.G.
Tihomirova, L.
Tognazzo, S.
Toland, A.E.
Tomlinson, I.
Torres, D.
Truong, T.
Tseng, C.-.
Tung, N.
Tworoger, S.S.
Vachon, C.
van den Ouweland, A.M.
van Doorn, H.C.
van Rensburg, E.J.
Van't Veer, L.J.
Vanderstichele, A.
Vergote, I.
Vijai, J.
Wang, Q.
Wang-Gohrke, S.
Weitzel, J.N.
Wentzensen, N.
Whittemore, A.S.
Wildiers, H.
Winqvist, R.
Wu, A.H.
Yannoukakos, D.
Yoon, S.-.
Yu, J.-.
Zheng, W.
Zheng, Y.
Khanna, K.K.
Simard, J.
Monteiro, A.N.
French, J.D.
Couch, F.J.
Freedman, M.L.
Easton, D.F.
Dunning, A.M.
Pharoah, P.D.
Edwards, S.L.
Chenevix-Trench, G.
Antoniou, A.C.
Gayther, S.A.
(2016). Functional mechanisms underlying pleiotropic risk alleles at the 19p13 1 breast-ovarian cancer susceptibility locus. Nat commun,
Vol.7,
p. 12675.
show abstract
full text
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk..
Guo, Y.
Warren Andersen, S.
Shu, X.-.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Garcia-Closas, M.
Milne, R.L.
Schmidt, M.K.
Chang-Claude, J.
Dunning, A.
Bojesen, S.E.
Ahsan, H.
Aittomäki, K.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Beeghly-Fadiel, A.
Benitez, J.
Bogdanova, N.V.
Bonanni, B.
Børresen-Dale, A.-.
Brand, J.
Brauch, H.
Brenner, H.
Brüning, T.
Burwinkel, B.
Casey, G.
Chenevix-Trench, G.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Devilee, P.
Dörk, T.
Dumont, M.
Fasching, P.A.
Figueroa, J.
Flesch-Janys, D.
Fletcher, O.
Flyger, H.
Fostira, F.
Gammon, M.
Giles, G.G.
Guénel, P.
Haiman, C.A.
Hamann, U.
Hooning, M.J.
Hopper, J.L.
Jakubowska, A.
Jasmine, F.
Jenkins, M.
John, E.M.
Johnson, N.
Jones, M.E.
Kabisch, M.
Kibriya, M.
Knight, J.A.
Koppert, L.B.
Kosma, V.-.
Kristensen, V.
Le Marchand, L.
Lee, E.
Li, J.
Lindblom, A.
Luben, R.
Lubinski, J.
Malone, K.E.
Mannermaa, A.
Margolin, S.
Marme, F.
McLean, C.
Meijers-Heijboer, H.
Meindl, A.
Neuhausen, S.L.
Nevanlinna, H.
Neven, P.
Olson, J.E.
Perez, J.I.
Perkins, B.
Peterlongo, P.
Phillips, K.-.
Pylkäs, K.
Rudolph, A.
Santella, R.
Sawyer, E.J.
Schmutzler, R.K.
Seynaeve, C.
Shah, M.
Shrubsole, M.J.
Southey, M.C.
Swerdlow, A.J.
Toland, A.E.
Tomlinson, I.
Torres, D.
Truong, T.
Ursin, G.
Van Der Luijt, R.B.
Verhoef, S.
Whittemore, A.S.
Winqvist, R.
Zhao, H.
Zhao, S.
Hall, P.
Simard, J.
Kraft, P.
Pharoah, P.
Hunter, D.
Easton, D.F.
Zheng, W.
(2016). Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. Plos med,
Vol.13
(8),
p. e1002105.
show abstract
full text
BACKGROUND: Observational epidemiological studies have shown that high body mass index (BMI) is associated with a reduced risk of breast cancer in premenopausal women but an increased risk in postmenopausal women. It is unclear whether this association is mediated through shared genetic or environmental factors. METHODS: We applied Mendelian randomization to evaluate the association between BMI and risk of breast cancer occurrence using data from two large breast cancer consortia. We created a weighted BMI genetic score comprising 84 BMI-associated genetic variants to predicted BMI. We evaluated genetically predicted BMI in association with breast cancer risk using individual-level data from the Breast Cancer Association Consortium (BCAC) (cases = 46,325, controls = 42,482). We further evaluated the association between genetically predicted BMI and breast cancer risk using summary statistics from 16,003 cases and 41,335 controls from the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Project. Because most studies measured BMI after cancer diagnosis, we could not conduct a parallel analysis to adequately evaluate the association of measured BMI with breast cancer risk prospectively. RESULTS: In the BCAC data, genetically predicted BMI was found to be inversely associated with breast cancer risk (odds ratio [OR] = 0.65 per 5 kg/m2 increase, 95% confidence interval [CI]: 0.56-0.75, p = 3.32 × 10-10). The associations were similar for both premenopausal (OR = 0.44, 95% CI:0.31-0.62, p = 9.91 × 10-8) and postmenopausal breast cancer (OR = 0.57, 95% CI: 0.46-0.71, p = 1.88 × 10-8). This association was replicated in the data from the DRIVE consortium (OR = 0.72, 95% CI: 0.60-0.84, p = 1.64 × 10-7). Single marker analyses identified 17 of the 84 BMI-associated single nucleotide polymorphisms (SNPs) in association with breast cancer risk at p < 0.05; for 16 of them, the allele associated with elevated BMI was associated with reduced breast cancer risk. CONCLUSIONS: BMI predicted by genome-wide association studies (GWAS)-identified variants is inversely associated with the risk of both pre- and postmenopausal breast cancer. The reduced risk of postmenopausal breast cancer associated with genetically predicted BMI observed in this study differs from the positive association reported from studies using measured adult BMI. Understanding the reasons for this discrepancy may reveal insights into the complex relationship of genetic determinants of body weight in the etiology of breast cancer..
Schmidt, M.K.
Hogervorst, F.
van Hien, R.
Cornelissen, S.
Broeks, A.
Adank, M.A.
Meijers, H.
Waisfisz, Q.
Hollestelle, A.
Schutte, M.
van den Ouweland, A.
Hooning, M.
Andrulis, I.L.
Anton-Culver, H.
Antonenkova, N.N.
Antoniou, A.C.
Arndt, V.
Bermisheva, M.
Bogdanova, N.V.
Bolla, M.K.
Brauch, H.
Brenner, H.
Brüning, T.
Burwinkel, B.
Chang-Claude, J.
Chenevix-Trench, G.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Dunning, A.M.
Fasching, P.A.
Figueroa, J.
Fletcher, O.
Flyger, H.
Galle, E.
García-Closas, M.
Giles, G.G.
Haeberle, L.
Hall, P.
Hillemanns, P.
Hopper, J.L.
Jakubowska, A.
John, E.M.
Jones, M.
Khusnutdinova, E.
Knight, J.A.
Kosma, V.-.
Kristensen, V.
Lee, A.
Lindblom, A.
Lubinski, J.
Mannermaa, A.
Margolin, S.
Meindl, A.
Milne, R.L.
Muranen, T.A.
Newcomb, P.A.
Offit, K.
Park-Simon, T.-.
Peto, J.
Pharoah, P.D.
Robson, M.
Rudolph, A.
Sawyer, E.J.
Schmutzler, R.K.
Seynaeve, C.
Soens, J.
Southey, M.C.
Spurdle, A.B.
Surowy, H.
Swerdlow, A.
Tollenaar, R.A.
Tomlinson, I.
Trentham-Dietz, A.
Vachon, C.
Wang, Q.
Whittemore, A.S.
Ziogas, A.
van der Kolk, L.
Nevanlinna, H.
Dörk, T.
Bojesen, S.
Easton, D.F.
(2016). Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J clin oncol,
Vol.34
(23),
pp. 2750-2760.
show abstract
full text
PURPOSE: CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS: CHEK2*1100delC genotyping was mostly done by a custom Taqman assay. Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS: Proportions of heterozygous CHEK2*1100delC carriers in controls, in patients with breast cancer from population- and hospital-based studies, and in patients with breast cancer from familial- and clinical genetics center-based studies were 0.5%, 1.3%, and 3.0%, respectively. The estimated OR for invasive breast cancer was 2.26 (95%CI, 1.90 to 2.69; P = 2.3 × 10(-20)). The OR was higher for estrogen receptor (ER)-positive disease (2.55 [95%CI, 2.10 to 3.10; P = 4.9 × 10(-21)]) than it was for ER-negative disease (1.32 [95%CI, 0.93 to 1.88; P = .12]; P interaction = 9.9 × 10(-4)). The OR significantly declined with attained age for breast cancer overall (P = .001) and for ER-positive tumors (P = .001). Estimated cumulative risks for development of ER-positive and ER-negative tumors by age 80 in CHEK2*1100delC carriers were 20% and 3%, respectively, compared with 9% and 2%, respectively, in the general population of the United Kingdom. CONCLUSION: These CHEK2*1100delC breast cancer risk estimates provide a basis for incorporating CHEK2*1100delC into breast cancer risk prediction models and into guidelines for intensified screening and follow-up..
Southey, M.C.
Goldgar, D.E.
Winqvist, R.
Pylkäs, K.
Couch, F.
Tischkowitz, M.
Foulkes, W.D.
Dennis, J.
Michailidou, K.
van Rensburg, E.J.
Heikkinen, T.
Nevanlinna, H.
Hopper, J.L.
Dörk, T.
Claes, K.B.
Reis-Filho, J.
Teo, Z.L.
Radice, P.
Catucci, I.
Peterlongo, P.
Tsimiklis, H.
Odefrey, F.A.
Dowty, J.G.
Schmidt, M.K.
Broeks, A.
Hogervorst, F.B.
Verhoef, S.
Carpenter, J.
Clarke, C.
Scott, R.J.
Fasching, P.A.
Haeberle, L.
Ekici, A.B.
Beckmann, M.W.
Peto, J.
Dos-Santos-Silva, I.
Fletcher, O.
Johnson, N.
Bolla, M.K.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Marme, F.
Burwinkel, B.
Yang, R.
Guénel, P.
Truong, T.
Menegaux, F.
Sanchez, M.
Bojesen, S.
Nielsen, S.F.
Flyger, H.
Benitez, J.
Zamora, M.P.
Perez, J.I.
Menéndez, P.
Anton-Culver, H.
Neuhausen, S.
Ziogas, A.
Clarke, C.A.
Brenner, H.
Arndt, V.
Stegmaier, C.
Brauch, H.
Brüning, T.
Ko, Y.-.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Bogdanova, N.V.
Antonenkova, N.N.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Spurdle, A.B.
Investigators, K.
Australian Ovarian Cancer Study Group,
Wauters, E.
Smeets, D.
Beuselinck, B.
Floris, G.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Olson, J.E.
Vachon, C.
Pankratz, V.S.
McLean, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Kristensen, V.
Alnæs, G.G.
Zheng, W.
Hunter, D.J.
Lindstrom, S.
Hankinson, S.E.
Kraft, P.
Andrulis, I.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Jukkola-Vuorinen, A.
Grip, M.
Kauppila, S.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Hollestelle, A.
Garcia-Closas, M.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Czene, K.
Darabi, H.
Eriksson, M.
Eccles, D.M.
Rafiq, S.
Tapper, W.J.
Gerty, S.M.
Hooning, M.J.
Martens, J.W.
Collée, J.M.
Tilanus-Linthorst, M.
Hall, P.
Li, J.
Brand, J.S.
Humphreys, K.
Cox, A.
Reed, M.W.
Luccarini, C.
Baynes, C.
Dunning, A.M.
Hamann, U.
Torres, D.
Ulmer, H.U.
Rüdiger, T.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Slager, S.
Toland, A.E.
Ambrosone, C.B.
Yannoukakos, D.
Swerdlow, A.
Ashworth, A.
Orr, N.
Jones, M.
González-Neira, A.
Pita, G.
Alonso, M.R.
Álvarez, N.
Herrero, D.
Tessier, D.C.
Vincent, D.
Bacot, F.
Simard, J.
Dumont, M.
Soucy, P.
Eeles, R.
Muir, K.
Wiklund, F.
Gronberg, H.
Schleutker, J.
Nordestgaard, B.G.
Weischer, M.
Travis, R.C.
Neal, D.
Donovan, J.L.
Hamdy, F.C.
Khaw, K.-.
Stanford, J.L.
Blot, W.J.
Thibodeau, S.
Schaid, D.J.
Kelley, J.L.
Maier, C.
Kibel, A.S.
Cybulski, C.
Cannon-Albright, L.
Butterbach, K.
Park, J.
Kaneva, R.
Batra, J.
Teixeira, M.R.
Kote-Jarai, Z.
Olama, A.A.
Benlloch, S.
Renner, S.P.
Hartmann, A.
Hein, A.
Ruebner, M.
Lambrechts, D.
Van Nieuwenhuysen, E.
Vergote, I.
Lambretchs, S.
Doherty, J.A.
Rossing, M.A.
Nickels, S.
Eilber, U.
Wang-Gohrke, S.
Odunsi, K.
Sucheston-Campbell, L.E.
Friel, G.
Lurie, G.
Killeen, J.L.
Wilkens, L.R.
Goodman, M.T.
Runnebaum, I.
Hillemanns, P.A.
Pelttari, L.M.
Butzow, R.
Modugno, F.
Edwards, R.P.
Ness, R.B.
Moysich, K.B.
du Bois, A.
Heitz, F.
Harter, P.
Kommoss, S.
Karlan, B.Y.
Walsh, C.
Lester, J.
Jensen, A.
Kjaer, S.K.
Høgdall, E.
Peissel, B.
Bonanni, B.
Bernard, L.
Goode, E.L.
Fridley, B.L.
Vierkant, R.A.
Cunningham, J.M.
Larson, M.C.
Fogarty, Z.C.
Kalli, K.R.
Liang, D.
Lu, K.H.
Hildebrandt, M.A.
Wu, X.
Levine, D.A.
Dao, F.
Bisogna, M.
Berchuck, A.
Iversen, E.S.
Marks, J.R.
Akushevich, L.
Cramer, D.W.
Schildkraut, J.
Terry, K.L.
Poole, E.M.
Stampfer, M.
Tworoger, S.S.
Bandera, E.V.
Orlow, I.
Olson, S.H.
Bjorge, L.
Salvesen, H.B.
van Altena, A.M.
Aben, K.K.
Kiemeney, L.A.
Massuger, L.F.
Pejovic, T.
Bean, Y.
Brooks-Wilson, A.
Kelemen, L.E.
Cook, L.S.
Le, N.D.
Górski, B.
Gronwald, J.
Menkiszak, J.
Høgdall, C.K.
Lundvall, L.
Nedergaard, L.
Engelholm, S.A.
Dicks, E.
Tyrer, J.
Campbell, I.
McNeish, I.
Paul, J.
Siddiqui, N.
Glasspool, R.
Whittemore, A.S.
Rothstein, J.H.
McGuire, V.
Sieh, W.
Cai, H.
Shu, X.-.
Teten, R.T.
Sutphen, R.
McLaughlin, J.R.
Narod, S.A.
Phelan, C.M.
Monteiro, A.N.
Fenstermacher, D.
Lin, H.-.
Permuth, J.B.
Sellers, T.A.
Chen, Y.A.
Tsai, Y.-.
Chen, Z.
Gentry-Maharaj, A.
Gayther, S.A.
Ramus, S.J.
Menon, U.
Wu, A.H.
Pearce, C.L.
Van Den Berg, D.
Pike, M.C.
Dansonka-Mieszkowska, A.
Plisiecka-Halasa, J.
Moes-Sosnowska, J.
Kupryjanczyk, J.
Pharoah, P.D.
Song, H.
Winship, I.
Chenevix-Trench, G.
Giles, G.G.
Tavtigian, S.V.
Easton, D.F.
Milne, R.L.
(2016). PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J med genet,
Vol.53
(12),
pp. 800-811.
show abstract
full text
BACKGROUND: The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. METHODS: We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. RESULTS: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. CONCLUSIONS: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important..
Johnson, N.
De Ieso, P.
Migliorini, G.
Orr, N.
Broderick, P.
Catovsky, D.
Matakidou, A.
Eisen, T.
Goldsmith, C.
Dudbridge, F.
Peto, J.
Dos-Santos-Silva, I.
Ashworth, A.
Ross, G.
Houlston, R.S.
Fletcher, O.
(2016). Cytochrome P450 Allele CYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer. Cancer res,
Vol.76
(6),
pp. 1485-1493.
show abstract
CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association between CYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1C allele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P = 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers..
Shi, J.
Zhang, Y.
Zheng, W.
Michailidou, K.
Ghoussaini, M.
Bolla, M.K.
Wang, Q.
Dennis, J.
Lush, M.
Milne, R.L.
Shu, X.-.
Beesley, J.
Kar, S.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Zhao, Z.
Guo, X.
Benitez, J.
Beeghly-Fadiel, A.
Blot, W.
Bogdanova, N.V.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Brinton, L.
Broeks, A.
Brüning, T.
Burwinkel, B.
Cai, H.
Canisius, S.
Chang-Claude, J.
Choi, J.-.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Darabi, H.
Devilee, P.
Droit, A.
Dork, T.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Fostira, F.
Gaborieau, V.
García-Closas, M.
Giles, G.G.
Mervi Grip,
Guenel, P.
Haiman, C.A.
Hamann, U.
Hartman, M.
Miao, H.
Hollestelle, A.
Hopper, J.L.
Hsiung, C.-.
kConFab Investigators,
Ito, H.
Jakubowska, A.
Johnson, N.
Torres, D.
Kabisch, M.
Kang, D.
Khan, S.
Knight, J.A.
Kosma, V.-.
Lambrechts, D.
Li, J.
Lindblom, A.
Lophatananon, A.
Lubinski, J.
Mannermaa, A.
Manoukian, S.
Le Marchand, L.
Margolin, S.
Marme, F.
Matsuo, K.
McLean, C.
Meindl, A.
Muir, K.
Neuhausen, S.L.
Nevanlinna, H.
Nord, S.
Børresen-Dale, A.-.
Olson, J.E.
Orr, N.
van den Ouweland, A.M.
Peterlongo, P.
Putti, T.C.
Rudolph, A.
Sangrajrang, S.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Shen, C.-.
Hou, M.-.
Shrubsole, M.J.
Southey, M.C.
Swerdlow, A.
Teo, S.H.
Thienpont, B.
Toland, A.E.
Tollenaar, R.A.
Tomlinson, I.
Truong, T.
Tseng, C.-.
Wen, W.
Winqvist, R.
Wu, A.H.
Yip, C.H.
Zamora, P.M.
Zheng, Y.
Floris, G.
Cheng, C.-.
Hooning, M.J.
Martens, J.W.
Seynaeve, C.
Kristensen, V.N.
Hall, P.
Pharoah, P.D.
Simard, J.
Chenevix-Trench, G.
Dunning, A.M.
Antoniou, A.C.
Easton, D.F.
Cai, Q.
Long, J.
(2016). Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. Int j cancer,
Vol.139
(6),
pp. 1303-1317.
show abstract
full text
Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2) = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry..
Horne, H.N.
Chung, C.C.
Zhang, H.
Yu, K.
Prokunina-Olsson, L.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Hopper, J.L.
Southey, M.C.
Schmidt, M.K.
Broeks, A.
Muir, K.
Lophatananon, A.
Fasching, P.A.
Beckmann, M.W.
Fletcher, O.
Johnson, N.
Sawyer, E.J.
Tomlinson, I.
Burwinkel, B.
Marme, F.
Guénel, P.
Truong, T.
Bojesen, S.E.
Flyger, H.
Benitez, J.
González-Neira, A.
Anton-Culver, H.
Neuhausen, S.L.
Brenner, H.
Arndt, V.
Meindl, A.
Schmutzler, R.K.
Brauch, H.
Hamann, U.
Nevanlinna, H.
Khan, S.
Matsuo, K.
Iwata, H.
Dörk, T.
Bogdanova, N.V.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kosma, V.-.
Chenevix-Trench, G.
kConFab/AOCS Investigators,
Wu, A.H.
Ven den Berg, D.
Smeets, A.
Zhao, H.
Chang-Claude, J.
Rudolph, A.
Radice, P.
Barile, M.
Couch, F.J.
Vachon, C.
Giles, G.G.
Milne, R.L.
Haiman, C.A.
Marchand, L.L.
Goldberg, M.S.
Teo, S.H.
Taib, N.A.
Kristensen, V.
Borresen-Dale, A.-.
Zheng, W.
Shrubsole, M.
Winqvist, R.
Jukkola-Vuorinen, A.
Andrulis, I.L.
Knight, J.A.
Devilee, P.
Seynaeve, C.
García-Closas, M.
Czene, K.
Darabi, H.
Hollestelle, A.
Martens, J.W.
Li, J.
Lu, W.
Shu, X.-.
Cox, A.
Cross, S.S.
Blot, W.
Cai, Q.
Shah, M.
Luccarini, C.
Baynes, C.
Harrington, P.
Kang, D.
Choi, J.-.
Hartman, M.
Chia, K.S.
Kabisch, M.
Torres, D.
Jakubowska, A.
Lubinski, J.
Sangrajrang, S.
Brennan, P.
Slager, S.
Yannoukakos, D.
Shen, C.-.
Hou, M.-.
Swerdlow, A.
Orr, N.
Simard, J.
Hall, P.
Pharoah, P.D.
Easton, D.F.
Chanock, S.J.
Dunning, A.M.
Figueroa, J.D.
(2016). Fine-Mapping of the 1p11 2 Breast Cancer Susceptibility Locus. Plos one,
Vol.11
(8),
p. e0160316.
show abstract
full text
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive..
Lin, W.-.
Camp, N.J.
Ghoussaini, M.
Beesley, J.
Michailidou, K.
Hopper, J.L.
Apicella, C.
Southey, M.C.
Stone, J.
Schmidt, M.K.
Broeks, A.
Van't Veer, L.J.
Th Rutgers, E.J.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Fasching, P.A.
Haeberle, L.
Ekici, A.B.
Beckmann, M.W.
Peto, J.
Dos-Santos-Silva, I.
Fletcher, O.
Johnson, N.
Bolla, M.K.
Wang, Q.
Dennis, J.
Sawyer, E.J.
Cheng, T.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Marmé, F.
Surowy, H.M.
Burwinkel, B.
Guénel, P.
Truong, T.
Menegaux, F.
Mulot, C.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Benitez, J.
Zamora, M.P.
Arias Perez, J.I.
Menéndez, P.
González-Neira, A.
Pita, G.
Alonso, M.R.
Alvarez, N.
Herrero, D.
Anton-Culver, H.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Meindl, A.
Lichtner, P.
Schmutzler, R.K.
Müller-Myhsok, B.
Brauch, H.
Brüning, T.
Ko, Y.-.
GENICA Network,
Tessier, D.C.
Vincent, D.
Bacot, F.
Nevanlinna, H.
Aittomäki, K.
Blomqvist, C.
Khan, S.
Matsuo, K.
Ito, H.
Iwata, H.
Horio, A.
Bogdanova, N.V.
Antonenkova, N.N.
Dörk, T.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Neven, P.
Wauters, E.
Wildiers, H.
Lambrechts, D.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Manoukian, S.
Bonanni, B.
Couch, F.J.
Wang, X.
Vachon, C.
Purrington, K.
Giles, G.G.
Milne, R.L.
Mclean, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Teo, S.H.
Yip, C.H.
Hassan, N.
Vithana, E.N.
Kristensen, V.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.J.
Long, J.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Van Asperen, C.J.
García-Closas, M.
Figueroa, J.
Lissowska, J.
Brinton, L.
Czene, K.
Darabi, H.
Eriksson, M.
Brand, J.S.
Hooning, M.J.
Hollestelle, A.
Van Den Ouweland, A.M.
Jager, A.
Li, J.
Liu, J.
Humphreys, K.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Cross, S.S.
Reed, M.W.
Blot, W.
Signorello, L.B.
Cai, Q.
Pharoah, P.D.
Perkins, B.
Shah, M.
Blows, F.M.
Kang, D.
Yoo, K.-.
Noh, D.-.
Hartman, M.
Miao, H.
Chia, K.S.
Putti, T.C.
Hamann, U.
Luccarini, C.
Baynes, C.
Ahmed, S.
Maranian, M.
Healey, C.S.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
Mckay, J.
Slager, S.
Toland, A.E.
Yannoukakos, D.
Shen, C.-.
Hsiung, C.-.
Wu, P.-.
Ding, S.-.
Ashworth, A.
Jones, M.
Orr, N.
Swerdlow, A.J.
Tsimiklis, H.
Makalic, E.
Schmidt, D.F.
Bui, Q.M.
Chanock, S.J.
Hunter, D.J.
Hein, R.
Dahmen, N.
Beckmann, L.
Aaltonen, K.
Muranen, T.A.
Heikkinen, T.
Irwanto, A.
Rahman, N.
Turnbull, C.A.
Breast and Ovarian Cancer Susceptibility (BOCS) Study,
Waisfisz, Q.
Meijers-Heijboer, H.E.
Adank, M.A.
Van Der Luijt, R.B.
Hall, P.
Chenevix-Trench, G.
Dunning, A.
Easton, D.F.
Cox, A.
(2015). Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum mol genet,
Vol.24
(1),
pp. 285-298.
show abstract
Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis..
Flanagan, J.M.
Brook, M.N.
Orr, N.
Tomczyk, K.
Coulson, P.
Fletcher, O.
Jones, M.E.
Schoemaker, M.J.
Ashworth, A.
Swerdlow, A.
Brown, R.
Garcia-Closas, M.
(2015). Temporal stability and determinants of white blood cell DNA methylation in the breakthrough generations study. Cancer epidemiol biomarkers prev,
Vol.24
(1),
pp. 221-229.
show abstract
BACKGROUND: Epigenome-wide association studies (EWAS) using measurements of blood DNA methylation are performed to identify associations of methylation changes with environmental and lifestyle exposures and disease risk. However, little is known about the variation of methylation markers in the population and their stability over time, both important factors in the design and interpretation of EWAS. We aimed to identify stable variable methylated probes (VMP), i.e., markers that are variable in the population, yet stable over time. METHODS: We estimated the intraclass correlation coefficient (ICC) for each probe on the Illumina 450K methylation array in paired samples collected approximately 6 years apart from 92 participants in the Breakthrough Generations Study. We also evaluated relationships with age, reproductive and hormonal history, weight, alcohol intake, and smoking. RESULTS: Approximately 17% of probes had an ICC > 0.50 and were considered stable VMPs (stable-VMPs). Stable-VMPs were enriched for probes located in "shores" bordering CpG islands, and at approximately 1.3 kb downstream from the transcription start site in the transition between the unmethylated promoter and methylated gene body. Both cross-sectional and longitudinal data analyses provided strong evidence for associations between changes in methylation levels and aging. Smoking-related probes at 2q37.1 and AHRR were stable-VMPs and related to time since quitting. We also observed associations between methylation and weight changes. CONCLUSION: Our results provide support for the use of white blood cell DNA methylation as a biomarker of exposure in EWAS. IMPACT: Larger studies, preferably with repeated measures over time, will be required to establish associations between specific probes and exposures..
Kabisch, M.
Lorenzo Bermejo, J.
Dünnebier, T.
Ying, S.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Shah, M.
Perkins, B.J.
Czene, K.
Darabi, H.
Eriksson, M.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Lambrechts, D.
Neven, P.
Peeters, S.
Weltens, C.
Couch, F.J.
Olson, J.E.
Wang, X.
Purrington, K.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Peto, J.
dos-Santos-Silva, I.
Johnson, N.
Fletcher, O.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Schmidt, M.K.
Broeks, A.
Cornelissen, S.
Hogervorst, F.B.
Li, J.
Brand, J.S.
Humphreys, K.
Guénel, P.
Truong, T.
Menegaux, F.
Sanchez, M.
Burwinkel, B.
Marmé, F.
Yang, R.
Bugert, P.
González-Neira, A.
Benitez, J.
Pilar Zamora, M.
Arias Perez, J.I.
Cox, A.
Cross, S.S.
Reed, M.W.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Haiman, C.A.
Schumacher, F.
Henderson, B.E.
Le Marchand, L.
Lindblom, A.
Margolin, S.
Hooning, M.J.
Hollestelle, A.
Kriege, M.
Koppert, L.B.
Hopper, J.L.
Southey, M.C.
Tsimiklis, H.
Apicella, C.
Slettedahl, S.
Toland, A.E.
Vachon, C.
Yannoukakos, D.
Giles, G.G.
Milne, R.L.
McLean, C.
Fasching, P.A.
Ruebner, M.
Ekici, A.B.
Beckmann, M.W.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Ashworth, A.
Orr, N.
Schoemaker, M.J.
Swerdlow, A.
García-Closas, M.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Brauch, H.
Brüning, T.
Ko, Y.-.
GENICA Network,
Radice, P.
Peterlongo, P.
Scuvera, G.
Fortuzzi, S.
Bogdanova, N.
Dörk, T.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Van Asperen, C.J.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Zheng, W.
Shrubsole, M.J.
Cai, Q.
Torres, D.
Anton-Culver, H.
Kristensen, V.
Bacot, F.
Tessier, D.C.
Vincent, D.
Luccarini, C.
Baynes, C.
Ahmed, S.
Maranian, M.
Simard, J.
Chenevix-Trench, G.
Hall, P.
Pharoah, P.D.
Dunning, A.M.
Easton, D.F.
Hamann, U.
(2015). Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis,
Vol.36
(2),
pp. 256-271.
show abstract
The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated..
Michailidou, K.
Beesley, J.
Lindstrom, S.
Canisius, S.
Dennis, J.
Lush, M.J.
Maranian, M.J.
Bolla, M.K.
Wang, Q.
Shah, M.
Perkins, B.J.
Czene, K.
Eriksson, M.
Darabi, H.
Brand, J.S.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Nielsen, S.F.
Rahman, N.
Turnbull, C.
BOCS,
Fletcher, O.
Peto, J.
Gibson, L.
dos-Santos-Silva, I.
Chang-Claude, J.
Flesch-Janys, D.
Rudolph, A.
Eilber, U.
Behrens, S.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Khan, S.
Aaltonen, K.
Ahsan, H.
Kibriya, M.G.
Whittemore, A.S.
John, E.M.
Malone, K.E.
Gammon, M.D.
Santella, R.M.
Ursin, G.
Makalic, E.
Schmidt, D.F.
Casey, G.
Hunter, D.J.
Gapstur, S.M.
Gaudet, M.M.
Diver, W.R.
Haiman, C.A.
Schumacher, F.
Henderson, B.E.
Le Marchand, L.
Berg, C.D.
Chanock, S.J.
Figueroa, J.
Hoover, R.N.
Lambrechts, D.
Neven, P.
Wildiers, H.
van Limbergen, E.
Schmidt, M.K.
Broeks, A.
Verhoef, S.
Cornelissen, S.
Couch, F.J.
Olson, J.E.
Hallberg, E.
Vachon, C.
Waisfisz, Q.
Meijers-Heijboer, H.
Adank, M.A.
van der Luijt, R.B.
Li, J.
Liu, J.
Humphreys, K.
Kang, D.
Choi, J.-.
Park, S.K.
Yoo, K.-.
Matsuo, K.
Ito, H.
Iwata, H.
Tajima, K.
Guénel, P.
Truong, T.
Mulot, C.
Sanchez, M.
Burwinkel, B.
Marme, F.
Surowy, H.
Sohn, C.
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
González-Neira, A.
Benitez, J.
Zamora, M.P.
Perez, J.I.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Cox, A.
Cross, S.S.
Reed, M.W.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
kConFab Investigators,
AOCS Group,
Lindblom, A.
Margolin, S.
Teo, S.H.
Yip, C.H.
Taib, N.A.
Tan, G.-.
Hooning, M.J.
Hollestelle, A.
Martens, J.W.
Collée, J.M.
Blot, W.
Signorello, L.B.
Cai, Q.
Hopper, J.L.
Southey, M.C.
Tsimiklis, H.
Apicella, C.
Shen, C.-.
Hsiung, C.-.
Wu, P.-.
Hou, M.-.
Kristensen, V.N.
Nord, S.
Alnaes, G.I.
NBCS,
Giles, G.G.
Milne, R.L.
McLean, C.
Canzian, F.
Trichopoulos, D.
Peeters, P.
Lund, E.
Sund, M.
Khaw, K.-.
Gunter, M.J.
Palli, D.
Mortensen, L.M.
Dossus, L.
Huerta, J.-.
Meindl, A.
Schmutzler, R.K.
Sutter, C.
Yang, R.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Hartman, M.
Miao, H.
Chia, K.S.
Chan, C.W.
Fasching, P.A.
Hein, A.
Beckmann, M.W.
Haeberle, L.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Ashworth, A.
Orr, N.
Schoemaker, M.J.
Swerdlow, A.J.
Brinton, L.
Garcia-Closas, M.
Zheng, W.
Halverson, S.L.
Shrubsole, M.
Long, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Brauch, H.
Hamann, U.
Brüning, T.
GENICA Network,
Radice, P.
Peterlongo, P.
Manoukian, S.
Bernard, L.
Bogdanova, N.V.
Dörk, T.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Van Asperen, C.J.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Huzarski, T.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Slager, S.
Toland, A.E.
Ambrosone, C.B.
Yannoukakos, D.
Kabisch, M.
Torres, D.
Neuhausen, S.L.
Anton-Culver, H.
Luccarini, C.
Baynes, C.
Ahmed, S.
Healey, C.S.
Tessier, D.C.
Vincent, D.
Bacot, F.
Pita, G.
Alonso, M.R.
Álvarez, N.
Herrero, D.
Simard, J.
Pharoah, P.P.
Kraft, P.
Dunning, A.M.
Chenevix-Trench, G.
Hall, P.
Easton, D.F.
(2015). Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat genet,
Vol.47
(4),
pp. 373-380.
show abstract
full text
Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1..
Glubb, D.M.
Maranian, M.J.
Michailidou, K.
Pooley, K.A.
Meyer, K.B.
Kar, S.
Carlebur, S.
O'Reilly, M.
Betts, J.A.
Hillman, K.M.
Kaufmann, S.
Beesley, J.
Canisius, S.
Hopper, J.L.
Southey, M.C.
Tsimiklis, H.
Apicella, C.
Schmidt, M.K.
Broeks, A.
Hogervorst, F.B.
van der Schoot, C.E.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Fasching, P.A.
Ruebner, M.
Ekici, A.B.
Beckmann, M.W.
Peto, J.
dos-Santos-Silva, I.
Fletcher, O.
Johnson, N.
Pharoah, P.D.
Bolla, M.K.
Wang, Q.
Dennis, J.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Burwinkel, B.
Marme, F.
Yang, R.
Surowy, H.
Guénel, P.
Truong, T.
Menegaux, F.
Sanchez, M.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
González-Neira, A.
Benitez, J.
Zamora, M.P.
Arias Perez, J.I.
Anton-Culver, H.
Neuhausen, S.L.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Meindl, A.
Schmutzler, R.K.
Brauch, H.
Ko, Y.-.
Brüning, T.
GENICA Network,
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Matsuo, K.
Ito, H.
Iwata, H.
Tanaka, H.
Dörk, T.
Bogdanova, N.V.
Helbig, S.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
kConFab Investigators,
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Lambrechts, D.
Zhao, H.
Weltens, C.
van Limbergen, E.
Chang-Claude, J.
Flesch-Janys, D.
Rudolph, A.
Seibold, P.
Radice, P.
Peterlongo, P.
Barile, M.
Capra, F.
Couch, F.J.
Olson, J.E.
Hallberg, E.
Vachon, C.
Giles, G.G.
Milne, R.L.
McLean, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Teo, S.H.
Yip, C.H.
See, M.-.
Cornes, B.
Cheng, C.-.
Ikram, M.K.
Kristensen, V.
Norwegian Breast Cancer Study,
Zheng, W.
Halverson, S.L.
Shrubsole, M.
Long, J.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Van Asperen, C.J.
García-Closas, M.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Czene, K.
Klevebring, D.
Darabi, H.
Eriksson, M.
Hooning, M.J.
Hollestelle, A.
Martens, J.W.
Collée, J.M.
Hall, P.
Li, J.
Humphreys, K.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Cox, A.
Cross, S.S.
Reed, M.W.
Blot, W.
Signorello, L.B.
Cai, Q.
Shah, M.
Ghoussaini, M.
Kang, D.
Choi, J.-.
Park, S.K.
Noh, D.-.
Hartman, M.
Miao, H.
Lim, W.Y.
Tang, A.
Hamann, U.
Torres, D.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Olswold, C.
Slager, S.
Toland, A.E.
Yannoukakos, D.
Shen, C.-.
Wu, P.-.
Yu, J.-.
Hou, M.-.
Swerdlow, A.
Ashworth, A.
Orr, N.
Jones, M.
Pita, G.
Alonso, M.R.
Álvarez, N.
Herrero, D.
Tessier, D.C.
Vincent, D.
Bacot, F.
Luccarini, C.
Baynes, C.
Ahmed, S.
Healey, C.S.
Brown, M.A.
Ponder, B.A.
Chenevix-Trench, G.
Thompson, D.J.
Edwards, S.L.
Easton, D.F.
Dunning, A.M.
French, J.D.
(2015). Fine-scale mapping of the 5q11 2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. Am j hum genet,
Vol.96
(1),
pp. 5-20.
show abstract
Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival..
Guo, X.
Long, J.
Zeng, C.
Michailidou, K.
Ghoussaini, M.
Bolla, M.K.
Wang, Q.
Milne, R.L.
Shu, X.-.
Cai, Q.
Beesley, J.
Kar, S.P.
Andrulis, I.L.
Anton-Culver, H.
Arndt, V.
Beckmann, M.W.
Beeghly-Fadiel, A.
Benitez, J.
Blot, W.
Bogdanova, N.
Bojesen, S.E.
Brauch, H.
Brenner, H.
Brinton, L.
Broeks, A.
Brüning, T.
Burwinkel, B.
Cai, H.
Canisius, S.
Chang-Claude, J.
Choi, J.-.
Couch, F.J.
Cox, A.
Cross, S.S.
Czene, K.
Darabi, H.
Devilee, P.
Droit, A.
Dörk, T.
Fasching, P.A.
Fletcher, O.
Flyger, H.
Fostira, F.
Gaborieau, V.
García-Closas, M.
Giles, G.G.
Grip, M.
Guénel, P.
Haiman, C.A.
Hamann, U.
Hartman, M.
Hollestelle, A.
Hopper, J.L.
Hsiung, C.-.
Ito, H.
Jakubowska, A.
Johnson, N.
Kabisch, M.
Kang, D.
Khan, S.
Knight, J.A.
Kosma, V.-.
Lambrechts, D.
Le Marchand, L.
Li, J.
Lindblom, A.
Lophatananon, A.
Lubinski, J.
Mannermaa, A.
Manoukian, S.
Margolin, S.
Marme, F.
Matsuo, K.
McLean, C.A.
Meindl, A.
Muir, K.
Neuhausen, S.L.
Nevanlinna, H.
Nord, S.
Olson, J.E.
Orr, N.
Peterlongo, P.
Putti, T.C.
Rudolph, A.
Sangrajrang, S.
Sawyer, E.J.
Schmidt, M.K.
Schmutzler, R.K.
Shen, C.-.
Shi, J.
Shrubsole, M.J.
Southey, M.C.
Swerdlow, A.
Teo, S.H.
Thienpont, B.
Toland, A.E.
Tollenaar, R.A.
Tomlinson, I.P.
Truong, T.
Tseng, C.-.
van den Ouweland, A.
Wen, W.
Winqvist, R.
Wu, A.
Yip, C.H.
Zamora, M.P.
Zheng, Y.
Hall, P.
Pharoah, P.D.
Simard, J.
Chenevix-Trench, G.
kConFab Investigators,
Dunning, A.M.
Easton, D.F.
Zheng, W.
(2015). Fine-scale mapping of the 4q24 locus identifies two independent loci associated with breast cancer risk. Cancer epidemiol biomarkers prev,
Vol.24
(11),
pp. 1680-1691.
show abstract
BACKGROUND: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. METHODS: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. RESULTS: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10(-4); OR, 1.04; 95% confidence interval (CI), 1.02-1.07] and rs77928427 (P = 1.86 × 10(-4); OR, 1.04; 95% CI, 1.02-1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r(2) ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor-binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. CONCLUSION: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. IMPACT: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk..
Zhang, B.
Shu, X.-.
Delahanty, R.J.
Zeng, C.
Michailidou, K.
Bolla, M.K.
Wang, Q.
Dennis, J.
Wen, W.
Long, J.
Li, C.
Dunning, A.M.
Chang-Claude, J.
Shah, M.
Perkins, B.J.
Czene, K.
Darabi, H.
Eriksson, M.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Lambrechts, D.
Neven, P.
Wildiers, H.
Floris, G.
Schmidt, M.K.
Rookus, M.A.
van den Hurk, K.
de Kort, W.L.
Couch, F.J.
Olson, J.E.
Hallberg, E.
Vachon, C.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Peto, J.
Dos-Santos-Silva, I.
Fletcher, O.
Johnson, N.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Li, J.
Humphreys, K.
Brand, J.
Guénel, P.
Truong, T.
Cordina-Duverger, E.
Menegaux, F.
Burwinkel, B.
Marme, F.
Yang, R.
Surowy, H.
Benitez, J.
Zamora, M.P.
Perez, J.I.
Cox, A.
Cross, S.S.
Reed, M.W.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Chenevix-Trench, G.
kConFab Investigators, Australian Ovarian Study Group,
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Marchand, L.L.
Lindblom, A.
Margolin, S.
Hooning, M.J.
Martens, J.W.
Tilanus-Linthorst, M.M.
Collée, J.M.
Hopper, J.L.
Southey, M.C.
Tsimiklis, H.
Apicella, C.
Slager, S.
Toland, A.E.
Ambrosone, C.B.
Yannoukakos, D.
Giles, G.G.
Milne, R.L.
McLean, C.
Fasching, P.A.
Haeberle, L.
Ekici, A.B.
Beckmann, M.W.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Swerdlow, A.J.
Ashworth, A.
Orr, N.
Jones, M.
Figueroa, J.
Garcia-Closas, M.
Brinton, L.
Lissowska, J.
Dumont, M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Brauch, H.
Brüning, T.
Ko, Y.-.
Peterlongo, P.
Manoukian, S.
Bonanni, B.
Radice, P.
Bogdanova, N.
Antonenkova, N.
Dörk, T.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Devilee, P.
Seynaeve, C.
Van Asperen, C.J.
Jakubowska, A.
Lubiński, J.
Jaworska-Bieniek, K.
Durda, K.
Hamann, U.
Torres, D.
Schmutzler, R.K.
Neuhausen, S.L.
Anton-Culver, H.
Kristensen, V.N.
Grenaker Alnæs, G.I.
DRIVE Project,
Pierce, B.L.
Kraft, P.
Peters, U.
Lindstrom, S.
Seminara, D.
Burgess, S.
Ahsan, H.
Whittemore, A.S.
John, E.M.
Gammon, M.D.
Malone, K.E.
Tessier, D.C.
Vincent, D.
Bacot, F.
Luccarini, C.
Baynes, C.
Ahmed, S.
Maranian, M.
Healey, C.S.
González-Neira, A.
Pita, G.
Alonso, M.R.
Álvarez, N.
Herrero, D.
Pharoah, P.D.
Simard, J.
Hall, P.
Hunter, D.J.
Easton, D.F.
Zheng, W.
(2015). Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. J natl cancer inst,
Vol.107
(11).
show abstract
BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a meta-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients. RESULTS: The pooled relative risk of breast cancer was 1.17 (95% confidence interval [CI] = 1.15 to 1.19) per 10cm increase in height in the meta-analysis of prospective studies. In Mendelian randomization analysis, the odds ratio of breast cancer per 10cm increase in genetically predicted height was 1.22 (95% CI = 1.13 to 1.32) in the first consortium and 1.21 (95% CI = 1.05 to 1.39) in the second consortium. The association was found in both premenopausal and postmenopausal women but restricted to hormone receptor-positive breast cancer. Analyses of height-associated variants identified eight new loci associated with breast cancer risk after adjusting for multiple comparisons, including three loci at 1q21.2, DNAJC27, and CCDC91 at genome-wide significance level P < 5×10(-8). CONCLUSIONS: Our study provides strong evidence that adult height is a risk factor for breast cancer in women and certain genetic factors and biological pathways affecting adult height have an important role in the etiology of breast cancer..
Orr, N.
Dudbridge, F.
Dryden, N.
Maguire, S.
Novo, D.
Perrakis, E.
Johnson, N.
Ghoussaini, M.
Hopper, J.L.
Southey, M.C.
Apicella, C.
Stone, J.
Schmidt, M.K.
Broeks, A.
Van't Veer, L.J.
Hogervorst, F.B.
Fasching, P.A.
Haeberle, L.
Ekici, A.B.
Beckmann, M.W.
Gibson, L.
Aitken, Z.
Warren, H.
Sawyer, E.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Burwinkel, B.
Marme, F.
Schneeweiss, A.
Sohn, C.
Guénel, P.
Truong, T.
Cordina-Duverger, E.
Sanchez, M.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Benitez, J.
Zamora, M.P.
Arias Perez, J.I.
Menéndez, P.
Anton-Culver, H.
Neuhausen, S.L.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Hamann, U.
Brauch, H.
Justenhoven, C.
Brüning, T.
Ko, Y.-.
Nevanlinna, H.
Aittomäki, K.
Blomqvist, C.
Khan, S.
Bogdanova, N.
Dörk, T.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Chenevix-Trench, G.
Beesley, J.
Lambrechts, D.
Moisse, M.
Floris, G.
Beuselinck, B.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Peissel, B.
Pensotti, V.
Couch, F.J.
Olson, J.E.
Slettedahl, S.
Vachon, C.
Giles, G.G.
Milne, R.L.
McLean, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Kristensen, V.
Alnæs, G.G.
Nord, S.
Borresen-Dale, A.-.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.
Long, J.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.M.
Van Asperen, C.J.
Garcia-Closas, M.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Czene, K.
Darabi, H.
Eriksson, M.
Klevebring, D.
Hooning, M.J.
Hollestelle, A.
van Deurzen, C.H.
Kriege, M.
Hall, P.
Li, J.
Liu, J.
Humphreys, K.
Cox, A.
Cross, S.S.
Reed, M.W.
Pharoah, P.D.
Dunning, A.M.
Shah, M.
Perkins, B.J.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Ashworth, A.
Swerdlow, A.
Jones, M.
Schoemaker, M.J.
Meindl, A.
Schmutzler, R.K.
Olswold, C.
Slager, S.
Toland, A.E.
Yannoukakos, D.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Matsuo, K.
Ito, H.
Iwata, H.
Ishiguro, J.
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Teo, S.H.
Yip, C.H.
Kang, P.
Ikram, M.K.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Kang, D.
Choi, J.-.
Park, S.K.
Noh, D.-.
Hartman, M.
Miao, H.
Lim, W.Y.
Lee, S.C.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
Mckay, J.
Wu, P.-.
Hou, M.-.
Yu, J.-.
Shen, C.-.
Blot, W.
Cai, Q.
Signorello, L.B.
Luccarini, C.
Bayes, C.
Ahmed, S.
Maranian, M.
Healey, C.S.
González-Neira, A.
Pita, G.
Alonso, M.R.
Álvarez, N.
Herrero, D.
Tessier, D.C.
Vincent, D.
Bacot, F.
Hunter, D.J.
Lindstrom, S.
Dennis, J.
Michailidou, K.
Bolla, M.K.
Easton, D.F.
dos Santos Silva, I.
Fletcher, O.
Peto, J.
GENICA Network,
kConFab Investigators,
Australian Ovarian Cancer Study Group,
(2015). Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31 2. Hum mol genet,
Vol.24
(10),
pp. 2966-2984.
show abstract
We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis..
Lemnrau, A.
Brook, M.N.
Fletcher, O.
Coulson, P.
Tomczyk, K.
Jones, M.
Ashworth, A.
Swerdlow, A.
Orr, N.
Garcia-Closas, M.
(2015). Mitochondrial DNA Copy Number in Peripheral Blood Cells and Risk of Developing Breast Cancer. Cancer res,
Vol.75
(14),
pp. 2844-2850.
show abstract
Increased mitochondrial DNA (mtDNA) copy number in peripheral blood cells (PBC) has been associated with the risk of developing several tumor types. Here we evaluate sources of variation of this biomarker and its association with breast cancer risk in a prospective cohort study. mtDNA copy number was measured using quantitative real-time PCR on PBC DNA samples from participants in the UK-based Breakthrough Generations Study. Temporal and assay variation was evaluated in a serial study of 91 women, with two blood samples collected approximately 6-years apart. Then, associations with breast cancer risk factors and risk were evaluated in 1,108 cases and 1,099 controls using a nested case-control design. In the serial study, mtDNA copy number showed low assay variation but large temporal variation [assay intraclass correlation coefficient (ICC), 79.3%-87.9%; temporal ICC, 38.3%). Higher mtDNA copy number was significantly associated with younger age at blood collection, being premenopausal, having an older age at menopause, and never taking HRT, both in cases and controls. Based on measurements in a single blood sample taken on average 6 years before diagnosis, higher mtDNA copy number was associated with increased breast cancer risk [OR (95% CI) for highest versus lowest quartile, 1.37 (1.02-1.83); P trend = 0.007]. In conclusion, mtDNA copy number is associated with breast cancer risk and represents a promising biomarker for risk assessment. The relatively large temporal variation should be taken into account in future analyses..
Jäger, R.
Migliorini, G.
Henrion, M.
Kandaswamy, R.
Speedy, H.E.
Heindl, A.
Whiffin, N.
Carnicer, M.J.
Broome, L.
Dryden, N.
Nagano, T.
Schoenfelder, S.
Enge, M.
Yuan, Y.
Taipale, J.
Fraser, P.
Fletcher, O.
Houlston, R.S.
(2015). Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat commun,
Vol.6,
p. 6178.
show abstract
full text
Multiple regulatory elements distant from their targets on the linear genome can influence the expression of a single gene through chromatin looping. Chromosome conformation capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin contacts. However, detection of functional enhancer-promoter interactions is precluded by its effective resolution that is determined by both restriction fragmentation and sensitivity of the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic characterization of these physical interactions on a genome-wide scale. Single-nucleotide polymorphisms associated with complex diseases often reside within regulatory elements and exert effects through long-range regulation of gene expression. Applying this cHi-C approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin interactions in cis and trans involving these loci..
Schoeps, A.
Rudolph, A.
Seibold, P.
Dunning, A.M.
Milne, R.L.
Bojesen, S.E.
Swerdlow, A.
Andrulis, I.
Brenner, H.
Behrens, S.
Orr, N.
Jones, M.
Ashworth, A.
Li, J.
Cramp, H.
Connley, D.
Czene, K.
Darabi, H.
Chanock, S.J.
Lissowska, J.
Figueroa, J.D.
Knight, J.
Glendon, G.
Mulligan, A.M.
Dumont, M.
Severi, G.
Baglietto, L.
Olson, J.
Vachon, C.
Purrington, K.
Moisse, M.
Neven, P.
Wildiers, H.
Spurdle, A.
Kosma, V.-.
Kataja, V.
Hartikainen, J.M.
Hamann, U.
Ko, Y.-.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Malats, N.
Arias Perez, J.I.
Benitez, J.
Flyger, H.
Nordestgaard, B.G.
Truong, T.
Cordina-Duverger, E.
Menegaux, F.
dos Santos Silva, I.
Fletcher, O.
Johnson, N.
Haeberle, L.
Beckmann, M.W.
Ekici, A.B.
Braaf, L.
Atsma, F.
van den Broek, A.J.
Makalic, E.
Schmidt, D.F.
Southey, M.C.
Cox, A.
Simard, J.
Giles, G.G.
Lambrechts, D.
Mannermaa, A.
Brauch, H.
Guenel, P.
Peto, J.
Fasching, P.A.
Hopper, J.
Flesch-Janys, D.
Couch, F.
Chenevix-Trench, G.
Pharoah, P.D.
Garcia-Closas, M.
Schmidt, M.K.
Hall, P.
Easton, D.F.
Chang-Claude, J.
(2014). Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions. Genetic epidemiology,
Vol.38
(1),
pp. 84-93.
Milne, R.L.
Herranz, J.
Michailidou, K.
Dennis, J.
Tyrer, J.P.
Zamora, M.P.
Arias-Perez, J.I.
González-Neira, A.
Pita, G.
Alonso, M.R.
Wang, Q.
Bolla, M.K.
Czene, K.
Eriksson, M.
Humphreys, K.
Darabi, H.
Li, J.
Anton-Culver, H.
Neuhausen, S.L.
Ziogas, A.
Clarke, C.A.
Hopper, J.L.
Dite, G.S.
Apicella, C.
Southey, M.C.
Chenevix-Trench, G.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Swerdlow, A.
Ashworth, A.
Orr, N.
Schoemaker, M.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Wang, X.
Olson, J.E.
Vachon, C.
Purrington, K.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Dunning, A.M.
Shah, M.
Guénel, P.
Truong, T.
Sanchez, M.
Mulot, C.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Lindblom, A.
Margolin, S.
Hooning, M.J.
Hollestelle, A.
Collée, J.M.
Jager, A.
Cox, A.
Brock, I.W.
Reed, M.W.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Dumont, M.
Soucy, P.
Dörk, T.
Bogdanova, N.V.
Hamann, U.
Försti, A.
Rüdiger, T.
Ulmer, H.-.
Fasching, P.A.
Häberle, L.
Ekici, A.B.
Beckmann, M.W.
Fletcher, O.
Johnson, N.
dos Santos Silva, I.
Peto, J.
Radice, P.
Peterlongo, P.
Peissel, B.
Mariani, P.
Giles, G.G.
Severi, G.
Baglietto, L.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Marme, F.
Burwinkel, B.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Lambrechts, D.
Yesilyurt, B.T.
Floris, G.
Leunen, K.
Alnæs, G.G.
Kristensen, V.
Børresen-Dale, A.-.
García-Closas, M.
Chanock, S.J.
Lissowska, J.
Figueroa, J.D.
Schmidt, M.K.
Broeks, A.
Verhoef, S.
Rutgers, E.J.
Brauch, H.
Brüning, T.
Ko, Y.-.
GENICA Network,
Couch, F.J.
Toland, A.E.
TNBCC,
Yannoukakos, D.
Pharoah, P.D.
Hall, P.
Benítez, J.
Malats, N.
Easton, D.F.
(2014). A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium. Hum mol genet,
Vol.23
(7),
pp. 1934-1946.
show abstract
full text
Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome..
Ahsan, H.
Halpern, J.
Kibriya, M.G.
Pierce, B.L.
Tong, L.
Gamazon, E.
McGuire, V.
Felberg, A.
Shi, J.
Jasmine, F.
Roy, S.
Brutus, R.
Argos, M.
Melkonian, S.
Chang-Claude, J.
Andrulis, I.
Hopper, J.L.
John, E.M.
Malone, K.
Ursin, G.
Gammon, M.D.
Thomas, D.C.
Seminara, D.
Casey, G.
Knight, J.A.
Southey, M.C.
Giles, G.G.
Santella, R.M.
Lee, E.
Conti, D.
Duggan, D.
Gallinger, S.
Haile, R.
Jenkins, M.
Lindor, N.M.
Newcomb, P.
Michailidou, K.
Apicella, C.
Park, D.J.
Peto, J.
Fletcher, O.
dos Santos Silva, I.
Lathrop, M.
Hunter, D.J.
Chanock, S.J.
Meindl, A.
Schmutzler, R.K.
Müller-Myhsok, B.
Lochmann, M.
Beckmann, L.
Hein, R.
Makalic, E.
Schmidt, D.F.
Bui, Q.M.
Stone, J.
Flesch-Janys, D.
Dahmen, N.
Nevanlinna, H.
Aittomäki, K.
Blomqvist, C.
Hall, P.
Czene, K.
Irwanto, A.
Liu, J.
Rahman, N.
Turnbull, C.
Familial Breast Cancer Study,
Dunning, A.M.
Pharoah, P.
Waisfisz, Q.
Meijers-Heijboer, H.
Uitterlinden, A.G.
Rivadeneira, F.
Nicolae, D.
Easton, D.F.
Cox, N.J.
Whittemore, A.S.
(2014). A genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age. Cancer epidemiol biomarkers prev,
Vol.23
(4),
pp. 658-669.
show abstract
Early-onset breast cancer (EOBC) causes substantial loss of life and productivity, creating a major burden among women worldwide. We analyzed 1,265,548 Hapmap3 single-nucleotide polymorphisms (SNP) among a discovery set of 3,523 EOBC incident cases and 2,702 population control women ages ≤ 51 years. The SNPs with smallest P values were examined in a replication set of 3,470 EOBC cases and 5,475 control women. We also tested EOBC association with 19,684 genes by annotating each gene with putative functional SNPs, and then combining their P values to obtain a gene-based P value. We examined the gene with smallest P value for replication in 1,145 breast cancer cases and 1,142 control women. The combined discovery and replication sets identified 72 new SNPs associated with EOBC (P < 4 × 10(-8)) located in six genomic regions previously reported to contain SNPs associated largely with later-onset breast cancer (LOBC). SNP rs2229882 and 10 other SNPs on chromosome 5q11.2 remained associated (P < 6 × 10(-4)) after adjustment for the strongest published SNPs in the region. Thirty-two of the 82 currently known LOBC SNPs were associated with EOBC (P < 0.05). Low power is likely responsible for the remaining 50 unassociated known LOBC SNPs. The gene-based analysis identified an association between breast cancer and the phosphofructokinase-muscle (PFKM) gene on chromosome 12q13.11 that met the genome-wide gene-based threshold of 2.5 × 10(-6). In conclusion, EOBC and LOBC seem to have similar genetic etiologies; the 5q11.2 region may contain multiple distinct breast cancer loci; and the PFKM gene region is worthy of further investigation. These findings should enhance our understanding of the etiology of breast cancer..
Sawyer, E.
Roylance, R.
Petridis, C.
Brook, M.N.
Nowinski, S.
Papouli, E.
Fletcher, O.
Pinder, S.
Hanby, A.
Kohut, K.
Gorman, P.
Caneppele, M.
Peto, J.
Dos Santos Silva, I.
Johnson, N.
Swann, R.
Dwek, M.
Perkins, K.-.
Gillett, C.
Houlston, R.
Ross, G.
De Ieso, P.
Southey, M.C.
Hopper, J.L.
Provenzano, E.
Apicella, C.
Wesseling, J.
Cornelissen, S.
Keeman, R.
Fasching, P.A.
Jud, S.M.
Ekici, A.B.
Beckmann, M.W.
Kerin, M.J.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Guénel, P.
Truong, T.
Laurent-Puig, P.
Kerbrat, P.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Milne, R.L.
Perez, J.I.
Menéndez, P.
Benitez, J.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Meindl, A.
Lichtner, P.
Schmutzler, R.K.
Lochmann, M.
Brauch, H.
Fischer, H.-.
Ko, Y.-.
GENICA Network,
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Bogdanova, N.V.
Dörk, T.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Chenevix-Trench, G.
KConFab Investigators,
Lambrechts, D.
Weltens, C.
Van Limbergen, E.
Hatse, S.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Bonanni, B.
Volorio, S.
Giles, G.G.
Severi, G.
Baglietto, L.
McLean, C.A.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Kristensen, V.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Devillee, P.
Tollenaar, R.A.
Seynaeve, C.M.
Kriege, M.
Figueroa, J.
Chanock, S.J.
Sherman, M.E.
Hooning, M.J.
Hollestelle, A.
van den Ouweland, A.M.
van Deurzen, C.H.
Li, J.
Czene, K.
Humphreys, K.
Cox, A.
Cross, S.S.
Reed, M.W.
Shah, M.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Swerdlow, A.
Ashworth, A.
Orr, N.
Schoemaker, M.
Couch, F.J.
Hallberg, E.
González-Neira, A.
Pita, G.
Alonso, M.R.
Tessier, D.C.
Vincent, D.
Bacot, F.
Bolla, M.K.
Wang, Q.
Dennis, J.
Michailidou, K.
Dunning, A.M.
Hall, P.
Easton, D.
Pharoah, P.
Schmidt, M.K.
Tomlinson, I.
Garcia-Closas, M.
(2014). Genetic predisposition to in situ and invasive lobular carcinoma of the breast. Plos genet,
Vol.10
(4),
p. e1004285.
show abstract
Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes..
Dudbridge, F.
Fletcher, O.
(2014). Gene-environment dependence creates spurious gene-environment interaction. Am j hum genet,
Vol.95
(3),
pp. 301-307.
show abstract
full text
Gene-environment interactions have the potential to shed light on biological processes leading to disease and to improve the accuracy of epidemiological risk models. However, relatively few such interactions have yet been confirmed. In part this is because genetic markers such as tag SNPs are usually studied, rather than the causal variants themselves. Previous work has shown that this leads to substantial loss of power and increased sample size when gene and environment are independent. However, dependence between gene and environment can arise in several ways including mediation, pleiotropy, and confounding, and several examples of gene-environment interaction under gene-environment dependence have recently been published. Here we show that under gene-environment dependence, a statistical interaction can be present between a marker and environment even if there is no interaction between the causal variant and the environment. We give simple conditions under which there is no marker-environment interaction and note that they do not hold in general when there is gene-environment dependence. Furthermore, the gene-environment dependence applies to the causal variant and cannot be assessed from marker data. Gene-gene interactions are susceptible to the same problem if two causal variants are in linkage disequilibrium. In addition to existing concerns about mechanistic interpretations, we suggest further caution in reporting interactions for genetic markers..
Dryden, N.H.
Broome, L.R.
Dudbridge, F.
Johnson, N.
Orr, N.
Schoenfelder, S.
Nagano, T.
Andrews, S.
Wingett, S.
Kozarewa, I.
Assiotis, I.
Fenwick, K.
Maguire, S.L.
Campbell, J.
Natrajan, R.
Lambros, M.
Perrakis, E.
Ashworth, A.
Fraser, P.
Fletcher, O.
(2014). Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome res,
Vol.24
(11),
pp. 1854-1868.
show abstract
Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements ("bait fragments") within the captured regions and "targets" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant..
Purrington, K.S.
Slettedahl, S.
Bolla, M.K.
Michailidou, K.
Czene, K.
Nevanlinna, H.
Bojesen, S.E.
Andrulis, I.L.
Cox, A.
Hall, P.
Carpenter, J.
Yannoukakos, D.
Haiman, C.A.
Fasching, P.A.
Mannermaa, A.
Winqvist, R.
Brenner, H.
Lindblom, A.
Chenevix-Trench, G.
Benitez, J.
Swerdlow, A.
Kristensen, V.
Guénel, P.
Meindl, A.
Darabi, H.
Eriksson, M.
Fagerholm, R.
Aittomäki, K.
Blomqvist, C.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Wang, X.
Olswold, C.
Olson, J.E.
Mulligan, A.M.
Knight, J.A.
Tchatchou, S.
Reed, M.W.
Cross, S.S.
Liu, J.
Li, J.
Humphreys, K.
Clarke, C.
Scott, R.
ABCTB Investigators,
Fostira, F.
Fountzilas, G.
Konstantopoulou, I.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Ekici, A.B.
Hartmann, A.
Beckmann, M.W.
Hartikainen, J.M.
Kosma, V.-.
Kataja, V.
Jukkola-Vuorinen, A.
Pylkäs, K.
Kauppila, S.
Dieffenbach, A.K.
Stegmaier, C.
Arndt, V.
Margolin, S.
Australian Ovarian Cancer Study Group,
kConFab Investigators,
Balleine, R.
Arias Perez, J.I.
Pilar Zamora, M.
Menéndez, P.
Ashworth, A.
Jones, M.
Orr, N.
Arveux, P.
Kerbrat, P.
Truong, T.
Bugert, P.
Toland, A.E.
Ambrosone, C.B.
Labrèche, F.
Goldberg, M.S.
Dumont, M.
Ziogas, A.
Lee, E.
Dite, G.S.
Apicella, C.
Southey, M.C.
Long, J.
Shrubsole, M.
Deming-Halverson, S.
Ficarazzi, F.
Barile, M.
Peterlongo, P.
Durda, K.
Jaworska-Bieniek, K.
Tollenaar, R.A.
Seynaeve, C.
GENICA Network,
Brüning, T.
Ko, Y.-.
Van Deurzen, C.H.
Martens, J.W.
Kriege, M.
Figueroa, J.D.
Chanock, S.J.
Lissowska, J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Schneeweiss, A.
Tapper, W.J.
Gerty, S.M.
Durcan, L.
Mclean, C.
Milne, R.L.
Baglietto, L.
dos Santos Silva, I.
Fletcher, O.
Johnson, N.
Van'T Veer, L.J.
Cornelissen, S.
Försti, A.
Torres, D.
Rüdiger, T.
Rudolph, A.
Flesch-Janys, D.
Nickels, S.
Weltens, C.
Floris, G.
Moisse, M.
Dennis, J.
Wang, Q.
Dunning, A.M.
Shah, M.
Brown, J.
Simard, J.
Anton-Culver, H.
Neuhausen, S.L.
Hopper, J.L.
Bogdanova, N.
Dörk, T.
Zheng, W.
Radice, P.
Jakubowska, A.
Lubinski, J.
Devillee, P.
Brauch, H.
Hooning, M.
García-Closas, M.
Sawyer, E.
Burwinkel, B.
Marmee, F.
Eccles, D.M.
Giles, G.G.
Peto, J.
Schmidt, M.
Broeks, A.
Hamann, U.
Chang-Claude, J.
Lambrechts, D.
Pharoah, P.D.
Easton, D.
Pankratz, V.S.
Slager, S.
Vachon, C.M.
Couch, F.J.
(2014). Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum mol genet,
Vol.23
(22),
pp. 6034-6046.
show abstract
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer..
Milne, R.L.
Burwinkel, B.
Michailidou, K.
Arias-Perez, J.-.
Zamora, M.P.
Menéndez-Rodríguez, P.
Hardisson, D.
Mendiola, M.
González-Neira, A.
Pita, G.
Alonso, M.R.
Dennis, J.
Wang, Q.
Bolla, M.K.
Swerdlow, A.
Ashworth, A.
Orr, N.
Schoemaker, M.
Ko, Y.-.
Brauch, H.
Hamann, U.
GENICA Network,
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Matsuo, K.
Ito, H.
Iwata, H.
Tajima, K.
Li, J.
Brand, J.S.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Lambrechts, D.
Peuteman, G.
Christiaens, M.-.
Smeets, A.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Hartman, M.
Hui, M.
Yen Lim, W.
Wan Chan, C.
Marme, F.
Yang, R.
Bugert, P.
Lindblom, A.
Margolin, S.
García-Closas, M.
Chanock, S.J.
Lissowska, J.
Figueroa, J.D.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Hooning, M.J.
Kriege, M.
van den Ouweland, A.M.
Koppert, L.B.
Fletcher, O.
Johnson, N.
dos-Santos-Silva, I.
Peto, J.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.J.
Long, J.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Cox, A.
Cross, S.S.
Reed, M.W.
Schmidt, M.K.
Broeks, A.
Cornelissen, S.
Braaf, L.
Kang, D.
Choi, J.-.
Park, S.K.
Noh, D.-.
Simard, J.
Dumont, M.
Goldberg, M.S.
Labrèche, F.
Fasching, P.A.
Hein, A.
Ekici, A.B.
Beckmann, M.W.
Radice, P.
Peterlongo, P.
Azzollini, J.
Barile, M.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Hopper, J.L.
Schmidt, D.F.
Makalic, E.
Southey, M.C.
Hwang Teo, S.
Har Yip, C.
Sivanandan, K.
Tay, W.-.
Shen, C.-.
Hsiung, C.-.
Yu, J.-.
Hou, M.-.
Guénel, P.
Truong, T.
Sanchez, M.
Mulot, C.
Blot, W.
Cai, Q.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Bogdanova, N.
Dörk, T.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Shu, X.-.
Lu, W.
Gao, Y.-.
Zhang, B.
Couch, F.J.
Toland, A.E.
TNBCC,
Yannoukakos, D.
Sangrajrang, S.
McKay, J.
Wang, X.
Olson, J.E.
Vachon, C.
Purrington, K.
Severi, G.
Baglietto, L.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Czene, K.
Eriksson, M.
Humphreys, K.
Darabi, H.
Ahmed, S.
Shah, M.
Pharoah, P.D.
Hall, P.
Giles, G.G.
Benítez, J.
Dunning, A.M.
Chenevix-Trench, G.
Easton, D.F.
(2014). Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Hum mol genet,
Vol.23
(22),
pp. 6096-6111.
show abstract
Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act..
Fletcher, O.
Dudbridge, F.
(2014). Candidate gene-environment interactions in breast cancer. Bmc medicine,
Vol.12.
full text
Agarwal, D.
Pineda, S.
Michailidou, K.
Herranz, J.
Pita, G.
Moreno, L.T.
Alonso, M.R.
Dennis, J.
Wang, Q.
Bolla, M.K.
Meyer, K.B.
Menendez-Rodriguez, P.
Hardisson, D.
Mendiola, M.
Gonzalez-Neira, A.
Lindblom, A.
Margolin, S.
Swerdlow, A.
Ashworth, A.
Orr, N.
Jones, M.
Matsuo, K.
Ito, H.
Iwata, H.
Kondo, N.
Hartman, M.
Hui, M.
Lim, W.Y.
Iau, P.T.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Kang, D.
Choi, J.-.
Park, S.K.
Noh, D.-.
Hopper, J.L.
Schmidt, D.F.
Makalic, E.
Southey, M.C.
Teo, S.H.
Yip, C.H.
Sivanandan, K.
Tay, W.-.
Brauch, H.
Bruening, T.
Hamann, U.
Dunning, A.M.
Shah, M.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Schmidt, M.K.
Broeks, A.
Rosenberg, E.H.
van't Veer, L.J.
Fasching, P.A.
Renner, S.P.
Ekici, A.B.
Beckmann, M.W.
Shen, C.-.
Hsiung, C.-.
Yu, J.-.
Hou, M.-.
Blot, W.
Cai, Q.
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Cox, A.
Brock, I.W.
Reed, M.W.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.J.
Long, J.
Shu, X.-.
Lu, W.
Gao, Y.-.
Zhang, B.
Radice, P.
Peterlongo, P.
Manoukian, S.
Mariette, F.
Sangrajrang, S.
Mckay, J.
Couch, F.J.
Toland, A.E.
Yannoukakos, D.
Fletcher, O.
Johnson, N.
dos Santos Silva, I.
Peto, J.
Marme, F.
Burwinkel, B.
Guenel, P.
Truong, T.
Sanchez, M.
Mulot, C.
Bojesen, S.E.
Nordestgaard, B.G.
Flyer, H.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Lambrechts, D.
Yesilyurt, B.T.
Floris, G.
Leunen, K.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Wang, X.
Olson, J.E.
Vachon, C.
Purrington, K.
Giles, G.G.
Severi, G.
Baglietto, L.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Dumont, M.
Goldberg, M.S.
Labreche, F.
Winqvist, R.
Pylkaes, K.
Jukkola-Vuorinen, A.
Grip, M.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Garcia-Closas, M.
Chanock, S.J.
Lissowska, J.
Figueroa, J.D.
Czene, K.
Eriksson, M.
Humphreys, K.
Darabi, H.
Hooning, M.J.
Kriege, M.
Collee, J.M.
Tilanus-Linthorst, M.
Li, J.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Nevanlinna, H.
Muranen, T.A.
Aittomaeki, K.
Blomqvist, C.
Bogdanova, N.
Doerk, T.
Hall, P.
Chenevix-Trench, G.
Easton, D.F.
Pharoah, P.D.
Arias-Perez, J.I.
Zamora, P.
Benitez, J.
Milne, R.L.
Investigators, K.
Gr, A.O.
Network, G.E.
TNBCC,
(2014). FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. British journal of cancer,
Vol.110
(4),
pp. 1088-1100.
Spurdle, A.B.
Couch, F.J.
Parsons, M.T.
McGuffog, L.
Barrowdale, D.
Bolla, M.K.
Wang, Q.
Healey, S.
Schmutzler, R.
Wappenschmidt, B.
Rhiem, K.
Hahnen, E.
Engel, C.
Meindl, A.
Ditsch, N.
Arnold, N.
Plendl, H.
Niederacher, D.
Sutter, C.
Wang-Gohrke, S.
Steinemann, D.
Preisler-Adams, S.
Kast, K.
Varon-Mateeva, R.
Ellis, S.
Frost, D.
Platte, R.
Perkins, J.
Evans, D.G.
Izatt, L.
Eeles, R.
Adlard, J.
Davidson, R.
Cole, T.
Scuvera, G.
Manoukian, S.
Bonanni, B.
Mariette, F.
Fortuzzi, S.
Viel, A.
Pasini, B.
Papi, L.
Varesco, L.
Balleine, R.
Nathanson, K.L.
Domchek, S.M.
Offitt, K.
Jakubowska, A.
Lindor, N.
Thomassen, M.
Jensen, U.B.
Rantala, J.
Borg, Å.
Andrulis, I.L.
Miron, A.
Hansen, T.V.
Caldes, T.
Neuhausen, S.L.
Toland, A.E.
Nevanlinna, H.
Montagna, M.
Garber, J.
Godwin, A.K.
Osorio, A.
Factor, R.E.
Terry, M.B.
Rebbeck, T.R.
Karlan, B.Y.
Southey, M.
Rashid, M.U.
Tung, N.
Pharoah, P.D.
Blows, F.M.
Dunning, A.M.
Provenzano, E.
Hall, P.
Czene, K.
Schmidt, M.K.
Broeks, A.
Cornelissen, S.
Verhoef, S.
Fasching, P.A.
Beckmann, M.W.
Ekici, A.B.
Slamon, D.J.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Chang-Claude, J.
Flesch-Janys, D.
Rudolph, A.
Seibold, P.
Aittomäki, K.
Muranen, T.A.
Heikkilä, P.
Blomqvist, C.
Figueroa, J.
Chanock, S.J.
Brinton, L.
Lissowska, J.
Olson, J.E.
Pankratz, V.S.
John, E.M.
Whittemore, A.S.
West, D.W.
Hamann, U.
Torres, D.
Ulmer, H.U.
Rüdiger, T.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
Van Asperen, C.J.
Eccles, D.M.
Tapper, W.J.
Durcan, L.
Jones, L.
Peto, J.
dos-Santos-Silva, I.
Fletcher, O.
Johnson, N.
Dwek, M.
Swann, R.
Bane, A.L.
Glendon, G.
Mulligan, A.M.
Giles, G.G.
Milne, R.L.
Baglietto, L.
McLean, C.
Carpenter, J.
Clarke, C.
Scott, R.
Brauch, H.
Brüning, T.
Ko, Y.-.
Cox, A.
Cross, S.S.
Reed, M.W.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Gronwald, J.
Dörk, T.
Bogdanova, N.
Park-Simon, T.-.
Hillemanns, P.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Burwinkel, B.
Marme, F.
Surovy, H.
Yang, R.
Anton-Culver, H.
Ziogas, A.
Hooning, M.J.
Collée, J.M.
Martens, J.W.
Tilanus-Linthorst, M.M.
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Lindblom, A.
Margolin, S.
Joseph, V.
Robson, M.
Rau-Murthy, R.
González-Neira, A.
Arias, J.I.
Zamora, P.
Benítez, J.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Peterlongo, P.
Zaffaroni, D.
Barile, M.
Capra, F.
Radice, P.
Teo, S.H.
Easton, D.F.
Antoniou, A.C.
Chenevix-Trench, G.
Goldgar, D.E.
ABCTB Investigators,
EMBRACE Group,
GENICA Network,
HEBON Group,
kConFab Investigators,
(2014). Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast cancer res,
Vol.16
(6),
p. 3419.
show abstract
full text
INTRODUCTION: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. METHODS: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. RESULTS: ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). CONCLUSIONS: These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management..
Johnson, N.
Dudbridge, F.
Orr, N.
Gibson, L.
Jones, M.E.
Schoemaker, M.J.
Folkerd, E.J.
Haynes, B.P.
Hopper, J.L.
Southey, M.C.
Dite, G.S.
Apicella, C.
Schmidt, M.K.
Broeks, A.
Van't Veer, L.J.
Atsma, F.
Muir, K.
Lophatananon, A.
Fasching, P.A.
Beckmann, M.W.
Ekici, A.B.
Renner, S.P.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Burwinkel, B.
Marme, F.
Schneeweiss, A.
Sohn, C.
Guenel, P.
Truong, T.
Cordina, E.
Menegaux, F.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Milne, R.
Zamora, M.P.
Arias Perez, J.I.
Benitez, J.
Bernstein, L.
Anton-Culver, H.
Ziogas, A.
Clarke Dur, C.
Brenner, H.
Muller, H.
Arndt, V.
Dieffenbach, A.K.
Meindl, A.
Heil, J.
Bartram, C.R.
Schmutzler, R.K.
Brauch, H.
Justenhoven, C.
Ko, Y.D.
Network, G.
Nevanlinna, H.
Muranen, T.A.
Aittomaki, K.
Blomqvist, C.
Matsuo, K.
Dork, T.
Bogdanova, N.V.
Antonenkova, N.N.
Lindblom, A.
Mannermaa, A.
Kataja, V.
Kosma, V.M.
Hartikainen, J.M.
Chenevix-Trench, G.
Beesley, J.
kConFab, I.
Australian Ovarian Cancer Study, G.
Wu, A.H.
Van den Berg, D.
Tseng, C.C.
Lambrechts, D.
Smeets, D.
Neven, P.
Wildiers, H.
Chang-Claude, J.
Rudolph, A.
Nickels, S.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Bonanni, B.
Pensotti, V.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Pankratz, V.S.
Giles, G.G.
Severi, G.
Baglietto, L.
Haiman, C.
Simard, J.
Goldberg, M.S.
Labreche, F.
Dumont, M.
Soucy, P.
Teo, S.
Yip, C.H.
Phuah, S.Y.
Cornes, B.K.
Kristensen, V.N.
Grenaker Alnaes, G.
Borresen-Dale, A.L.
Zheng, W.
Winqvist, R.
Pylkas, K.
Jukkola-Vuorinen, A.
Grip, M.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Devillee, P.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Sherman, M.E.
Hall, P.
Schoof, N.
Hooning, M.
Hollestelle, A.
Oldenburg, R.A.
Tilanus-Linthorst, M.
Liu, J.
Cox, A.
Brock, I.W.
Reed, M.W.
Cross, S.S.
Blot, W.
Signorello, L.B.
Pharoah, P.D.
Dunning, A.M.
Shah, M.
Kang, D.
Noh, D.Y.
Park, S.K.
Choi, J.Y.
Hartman, M.
Miao, H.
Lim, W.Y.
Tang, A.
Hamann, U.
Forsti, A.
Rudiger, T.
Ulmer, H.U.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Slager, S.
Toland, A.E.
Vachon, C.
Yannoukakos, D.
Shen, C.Y.
Yu, J.C.
Huang, C.S.
Hou, M.F.
Gonzalez-Neira, A.
Tessier, D.C.
Vincent, D.
Bacot, F.
Luccarini, C.
Dennis, J.
Michailidou, K.
Bolla, M.K.
Wang, J.
Easton, D.F.
Garcia-Closas, M.
Dowsett, M.
Ashworth, A.
Swerdlow, A.J.
Peto, J.
dos Santos Silva, I.
Fletcher, O.
(2014). Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast cancer res,
Vol.16,
p. R51.
show abstract
full text
INTRODUCTION: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age =50 years. METHODS: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics. RESULTS: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P(trend) = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P(trend) = 0.005) but not cases (P(trend) = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P(het) = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age >/=15 years (OR(het) = 0.84, 95% CI 0.75, 0.94; OR(hom) = 0.81, 95% CI 0.51, 1.30; P(trend) = 0.002) but not for those who had their menarche age =11 years (OR(het) = 1.06, 95% CI 0.95, 1.19, OR(hom) = 1.07, 95% CI 0.67, 1.72; P(trend) = 0.29). CONCLUSIONS: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels..
Khan, S.
Greco, D.
Michailidou, K.
Milne, R.L.
Muranen, T.A.
Heikkinen, T.
Aaltonen, K.
Dennis, J.
Bolla, M.K.
Liu, J.
Hall, P.
Irwanto, A.
Humphreys, K.
Li, J.
Czene, K.
Chang-Claude, J.
Hein, R.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Fletcher, O.
Peto, J.
dos Santos Silva, I.
Johnson, N.
Gibson, L.
Aitken, Z.
Hopper, J.L.
Tsimiklis, H.
Bui, M.
Makalic, E.
Schmidt, D.F.
Southey, M.C.
Apicella, C.
Stone, J.
Waisfisz, Q.
Meijers-Heijboer, H.
Adank, M.A.
van der Luijt, R.B.
Meindl, A.
Schmutzler, R.K.
Müller-Myhsok, B.
Lichtner, P.
Turnbull, C.
Rahman, N.
Chanock, S.J.
Hunter, D.J.
Cox, A.
Cross, S.S.
Reed, M.W.
Schmidt, M.K.
Broeks, A.
Van't Veer, L.J.
Hogervorst, F.B.
Fasching, P.A.
Schrauder, M.G.
Ekici, A.B.
Beckmann, M.W.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Benitez, J.
Zamora, P.M.
Perez, J.I.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Pharoah, P.D.
Dunning, A.M.
Shah, M.
Luben, R.
Brown, J.
Couch, F.J.
Wang, X.
Vachon, C.
Olson, J.E.
Lambrechts, D.
Moisse, M.
Paridaens, R.
Christiaens, M.-.
Guénel, P.
Truong, T.
Laurent-Puig, P.
Mulot, C.
Marme, F.
Burwinkel, B.
Schneeweiss, A.
Sohn, C.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Andrulis, I.L.
Knight, J.A.
Tchatchou, S.
Mulligan, A.M.
Dörk, T.
Bogdanova, N.V.
Antonenkova, N.N.
Anton-Culver, H.
Darabi, H.
Eriksson, M.
Garcia-Closas, M.
Figueroa, J.
Lissowska, J.
Brinton, L.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
van Asperen, C.J.
Kristensen, V.N.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Slager, S.
Toland, A.E.
Ambrosone, C.B.
Yannoukakos, D.
Lindblom, A.
Margolin, S.
Radice, P.
Peterlongo, P.
Barile, M.
Mariani, P.
Hooning, M.J.
Martens, J.W.
Collée, J.M.
Jager, A.
Jakubowska, A.
Lubinski, J.
Jaworska-Bieniek, K.
Durda, K.
Giles, G.G.
McLean, C.
Brauch, H.
Brüning, T.
Ko, Y.-.
GENICA Network,
Brenner, H.
Dieffenbach, A.K.
Arndt, V.
Stegmaier, C.
Swerdlow, A.
Ashworth, A.
Orr, N.
Jones, M.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Mannermaa, A.
Hamann, U.
Chenevix-Trench, G.
Blomqvist, C.
Aittomäki, K.
Easton, D.F.
Nevanlinna, H.
(2014). MicroRNA related polymorphisms and breast cancer risk. Plos one,
Vol.9
(11),
p. e109973.
show abstract
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects..
Nickels, S.
Truong, T.
Hein, R.
Stevens, K.
Buck, K.
Behrens, S.
Eilber, U.
Schmidt, M.
Haeberle, L.
Vrieling, A.
Gaudet, M.
Figueroa, J.
Schoof, N.
Spurdle, A.B.
Rudolph, A.
Fasching, P.A.
Hopper, J.L.
Makalic, E.
Schmidt, D.F.
Southey, M.C.
Beckmann, M.W.
Ekici, A.B.
Fletcher, O.
Gibson, L.
Silva, I.D.
Peto, J.
Humphreys, M.K.
Wang, J.
Cordina-Duverger, E.
Menegaux, F.
Nordestgaard, B.G.
Bojesen, S.E.
Lanng, C.
Anton-Culver, H.
Ziogas, A.
Bernstein, L.
Clarke, C.A.
Brenner, H.
Mueller, H.
Arndt, V.
Stegmaier, C.
Brauch, H.
Bruening, T.
Harth, V.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Lambrechts, D.
Smeets, D.
Neven, P.
Paridaens, R.
Flesch-Janys, D.
Obi, N.
Wang-Gohrke, S.
Couch, F.J.
Olson, J.E.
Vachon, C.M.
Giles, G.G.
Severi, G.
Baglietto, L.
Offit, K.
John, E.M.
Miron, A.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Chanock, S.J.
Lissowska, J.
Liu, J.
Cox, A.
Cramp, H.
Connley, D.
Balasubramanian, S.
Dunning, A.M.
Shah, M.
Trentham-Dietz, A.
Newcomb, P.
Titus, L.
Egan, K.
Cahoon, E.K.
Rajaraman, P.
Sigurdson, A.J.
Doody, M.M.
Guenel, P.
Pharoah, P.D.
Schmidt, M.K.
Hall, P.
Easton, D.F.
Garcia-Closas, M.
Milne, R.L.
Chang-Claude, J.
Network, G.E.
kConFab,
Grp, A.O.
(2013). Evidence of Gene-Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors. Plos genetics,
Vol.9
(3).
Garcia-Closas, M.
Couch, F.J.
Lindstrom, S.
Michailidou, K.
Schmidt, M.K.
Brook, M.N.
Orr, N.
Rhie, S.K.
Riboli, E.
Feigelson, H.S.
Le Marchand, L.
Buring, J.E.
Eccles, D.
Miron, P.
Fasching, P.A.
Brauch, H.
Chang-Claude, J.
Carpenter, J.
Godwin, A.K.
Nevanlinna, H.
Giles, G.G.
Cox, A.
Hopper, J.L.
Bolla, M.K.
Wang, Q.
Dennis, J.
Dicks, E.
Howat, W.J.
Schoof, N.
Bojesen, S.E.
Lambrechts, D.
Broeks, A.
Andrulis, I.L.
Guénel, P.
Burwinkel, B.
Sawyer, E.J.
Hollestelle, A.
Fletcher, O.
Winqvist, R.
Brenner, H.
Mannermaa, A.
Hamann, U.
Meindl, A.
Lindblom, A.
Zheng, W.
Devillee, P.
Goldberg, M.S.
Lubinski, J.
Kristensen, V.
Swerdlow, A.
Anton-Culver, H.
Dörk, T.
Muir, K.
Matsuo, K.
Wu, A.H.
Radice, P.
Teo, S.H.
Shu, X.-.
Blot, W.
Kang, D.
Hartman, M.
Sangrajrang, S.
Shen, C.-.
Southey, M.C.
Park, D.J.
Hammet, F.
Stone, J.
Veer, L.J.
Rutgers, E.J.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Peto, J.
Schrauder, M.G.
Ekici, A.B.
Beckmann, M.W.
Dos Santos Silva, I.
Johnson, N.
Warren, H.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Marme, F.
Schneeweiss, A.
Sohn, C.
Truong, T.
Laurent-Puig, P.
Kerbrat, P.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Milne, R.L.
Perez, J.I.
Menéndez, P.
Müller, H.
Arndt, V.
Stegmaier, C.
Lichtner, P.
Lochmann, M.
Justenhoven, C.
Ko, Y.-.
Gene ENvironmental Interaction and breast CAncer (GENICA) Network,
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Greco, D.
Heikkinen, T.
Ito, H.
Iwata, H.
Yatabe, Y.
Antonenkova, N.N.
Margolin, S.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Balleine, R.
kConFab Investigators,
Tseng, C.-.
Berg, D.V.
Stram, D.O.
Neven, P.
Dieudonné, A.-.
Leunen, K.
Rudolph, A.
Nickels, S.
Flesch-Janys, D.
Peterlongo, P.
Peissel, B.
Bernard, L.
Olson, J.E.
Wang, X.
Stevens, K.
Severi, G.
Baglietto, L.
McLean, C.
Coetzee, G.A.
Feng, Y.
Henderson, B.E.
Schumacher, F.
Bogdanova, N.V.
Labrèche, F.
Dumont, M.
Yip, C.H.
Taib, N.A.
Cheng, C.-.
Shrubsole, M.
Long, J.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Tollenaar, R.A.
Seynaeve, C.M.
Kriege, M.
Hooning, M.J.
van den Ouweland, A.M.
van Deurzen, C.H.
Lu, W.
Gao, Y.-.
Cai, H.
Balasubramanian, S.P.
Cross, S.S.
Reed, M.W.
Signorello, L.
Cai, Q.
Shah, M.
Miao, H.
Chan, C.W.
Chia, K.S.
Jakubowska, A.
Jaworska, K.
Durda, K.
Hsiung, C.-.
Wu, P.-.
Yu, J.-.
Ashworth, A.
Jones, M.
Tessier, D.C.
González-Neira, A.
Pita, G.
Alonso, M.R.
Vincent, D.
Bacot, F.
Ambrosone, C.B.
Bandera, E.V.
John, E.M.
Chen, G.K.
Hu, J.J.
Rodriguez-Gil, J.L.
Bernstein, L.
Press, M.F.
Ziegler, R.G.
Millikan, R.M.
Deming-Halverson, S.L.
Nyante, S.
Ingles, S.A.
Waisfisz, Q.
Tsimiklis, H.
Makalic, E.
Schmidt, D.
Bui, M.
Gibson, L.
Müller-Myhsok, B.
Schmutzler, R.K.
Hein, R.
Dahmen, N.
Beckmann, L.
Aaltonen, K.
Czene, K.
Irwanto, A.
Liu, J.
Turnbull, C.
Familial Breast Cancer Study (FBCS),
Rahman, N.
Meijers-Heijboer, H.
Uitterlinden, A.G.
Rivadeneira, F.
Australian Breast Cancer Tissue Bank (ABCTB) Investigators,
Olswold, C.
Slager, S.
Pilarski, R.
Ademuyiwa, F.
Konstantopoulou, I.
Martin, N.G.
Montgomery, G.W.
Slamon, D.J.
Rauh, C.
Lux, M.P.
Jud, S.M.
Bruning, T.
Weaver, J.
Sharma, P.
Pathak, H.
Tapper, W.
Gerty, S.
Durcan, L.
Trichopoulos, D.
Tumino, R.
Peeters, P.H.
Kaaks, R.
Campa, D.
Canzian, F.
Weiderpass, E.
Johansson, M.
Khaw, K.-.
Travis, R.
Clavel-Chapelon, F.
Kolonel, L.N.
Chen, C.
Beck, A.
Hankinson, S.E.
Berg, C.D.
Hoover, R.N.
Lissowska, J.
Figueroa, J.D.
Chasman, D.I.
Gaudet, M.M.
Diver, W.R.
Willett, W.C.
Hunter, D.J.
Simard, J.
Benitez, J.
Dunning, A.M.
Sherman, M.E.
Chenevix-Trench, G.
Chanock, S.J.
Hall, P.
Pharoah, P.D.
Vachon, C.
Easton, D.F.
Haiman, C.A.
Kraft, P.
(2013). Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat genet,
Vol.45
(4),
pp. 392-398e2.
show abstract
full text
Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers..
Bojesen, S.E.
Pooley, K.A.
Johnatty, S.E.
Beesley, J.
Michailidou, K.
Tyrer, J.P.
Edwards, S.L.
Pickett, H.A.
Shen, H.C.
Smart, C.E.
Hillman, K.M.
Mai, P.L.
Lawrenson, K.
Stutz, M.D.
Lu, Y.
Karevan, R.
Woods, N.
Johnston, R.L.
French, J.D.
Chen, X.
Weischer, M.
Nielsen, S.F.
Maranian, M.J.
Ghoussaini, M.
Ahmed, S.
Baynes, C.
Bolla, M.K.
Wang, Q.
Dennis, J.
McGuffog, L.
Barrowdale, D.
Lee, A.
Healey, S.
Lush, M.
Tessier, D.C.
Vincent, D.
Bacot, F.
Vergote, I.
Lambrechts, S.
Despierre, E.
Risch, H.A.
Gonzalez-Neira, A.
Rossing, M.A.
Pita, G.
Doherty, J.A.
Alvarez, N.
Larson, M.C.
Fridley, B.L.
Schoof, N.
Chang-Claude, J.
Cicek, M.S.
Peto, J.
Kalli, K.R.
Broeks, A.
Armasu, S.M.
Schmidt, M.K.
Braaf, L.M.
Winterhoff, B.
Nevanlinna, H.
Konecny, G.E.
Lambrechts, D.
Rogmann, L.
Guenel, P.
Teoman, A.
Milne, R.L.
Garcia, J.J.
Cox, A.
Shridhar, V.
Burwinkel, B.
Marme, F.
Hein, R.
Sawyer, E.J.
Haiman, C.A.
Wang-Gohrke, S.
Andrulis, I.L.
Moysich, K.B.
Hopper, J.L.
Odunsi, K.
Lindblom, A.
Giles, G.G.
Brenner, H.
Simard, J.
Lurie, G.
Fasching, P.A.
Carney, M.E.
Radice, P.
Wilkens, L.R.
Swerdlow, A.
Goodman, M.T.
Brauch, H.
Garcia-Closas, M.
Hillemanns, P.
Winqvist, R.
Durst, M.
Devilee, P.
Runnebaum, I.
Jakubowska, A.
Lubinski, J.
Mannermaa, A.
Butzow, R.
Bogdanova, N.V.
Doerk, T.
Pelttari, L.M.
Zheng, W.
Leminen, A.
Anton-Culver, H.
Bunker, C.H.
Kristensen, V.
Ness, R.B.
Muir, K.
Edwards, R.
Meindl, A.
Heitz, F.
Matsuo, K.
du Bois, A.
Wu, A.H.
Harter, P.
Teo, S.-.
Schwaab, I.
Shu, X.-.
Blot, W.
Hosono, S.
Kang, D.
Nakanishi, T.
Hartman, M.
Yatabe, Y.
Hamann, U.
Karlan, B.Y.
Sangrajrang, S.
Kjaer, S.K.
Gaborieau, V.
Jensen, A.
Eccles, D.
Hogdall, E.
Shen, C.-.
Brown, J.
Woo, Y.L.
Shah, M.
Azmi, M.A.
Luben, R.
Omar, S.Z.
Czene, K.
Vierkant, R.A.
Nordestgaard, B.G.
Flyger, H.
Vachon, C.
Olson, J.E.
Wang, X.
Levine, D.A.
Rudolph, A.
Weber, R.P.
Flesch-Janys, D.
Iversen, E.
Nickels, S.
Schildkraut, J.M.
Silva, I.D.
Cramer, D.W.
Gibson, L.
Terry, K.L.
Fletcher, O.
Vitonis, A.F.
van der Schoot, C.E.
Poole, E.M.
Hogervorst, F.B.
Tworoger, S.S.
Liu, J.
Bandera, E.V.
Li, J.
Olson, S.H.
Humphreys, K.
Row, I.
Blomqvist, C.
Rodriguez-Rodriguez, L.
Aittomaki, K.
Salvesen, H.B.
Muranen, T.A.
Wik, E.
Brouwers, B.
Krakstad, C.
Wauters, E.
Halle, M.K.
Wildiers, H.
Kiemeney, L.A.
Mulot, C.
Aben, K.K.
Laurent-Puig, P.
Altena, A.M.
Truong, T.
Massuger, L.F.
Benitez, J.
Pejovic, T.
Arias Perez, J.I.
Hoatlin, M.
Zamora, M.P.
Cook, L.S.
Balasubramanian, S.P.
Kelemen, L.E.
Schneeweiss, A.
Le, N.D.
Sohn, C.
Brooks-Wilson, A.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Cybulski, C.
Henderson, B.E.
Menkiszak, J.
Schumacher, F.
Wentzensen, N.
Marchand, L.L.
Yang, H.P.
Mulligan, A.M.
Glendon, G.
Engelholm, S.A.
Knight, J.A.
Hogdall, C.K.
Apicella, C.
Gore, M.
Tsimiklis, H.
Song, H.
Southey, M.C.
Jager, A.
den Ouweland, A.M.
Brown, R.
Martens, J.W.
Flanagan, J.M.
Kriege, M.
Paul, J.
Margolin, S.
Siddiqui, N.
Severi, G.
Whittemore, A.S.
Baglietto, L.
McGuire, V.
Stegmaier, C.
Sieh, W.
Mueller, H.
Arndt, V.
Labreche, F.
Gao, Y.-.
Goldberg, M.S.
Yang, G.
Dumont, M.
McLaughlin, J.R.
Hartmann, A.
Ekici, A.B.
Beckmann, M.W.
Phelan, C.M.
Lux, M.P.
Permuth-Wey, J.
Peissel, B.
Sellers, T.A.
Ficarazzi, F.
Barile, M.
Ziogas, A.
Ashworth, A.
Gentry-Maharaj, A.
Jones, M.
Ramus, S.J.
Orr, N.
Menon, U.
Pearce, C.L.
Bruening, T.
Pike, M.C.
Ko, Y.-.
Lissowska, J.
Figueroa, J.
Kupryjanczyk, J.
Chanock, S.J.
Dansonka-Mieszkowska, A.
Jukkola-Vuorinen, A.
Rzepecka, I.K.
Pylkas, K.
Bidzinski, M.
Kauppila, S.
Hollestelle, A.
Seynaeve, C.
Tollenaar, R.A.
Durda, K.
Jaworska, K.
Hartikainen, J.M.
Kosma, V.-.
Kataja, V.
Antonenkova, N.N.
Long, J.
Shrubsole, M.
Deming-Halverson, S.
Lophatananon, A.
Siriwanarangsan, P.
Stewart-Brown, S.
Ditsch, N.
Lichtner, P.
Schmutzler, R.K.
Ito, H.
Iwata, H.
Tajima, K.
Tseng, C.-.
Stram, D.O.
van den Berg, D.
Yip, C.H.
Ikrarn, M.K.
Teh, Y.-.
Cai, H.
Lu, W.
Signorello, L.B.
Cai, Q.
Noh, D.-.
Yoo, K.-.
Miao, H.
Iau, P.T.
Teo, Y.Y.
McKay, J.
Shapiro, C.
Ademuyiwa, F.
Fountzilas, G.
Hsiung, C.-.
Yu, J.-.
Hou, M.-.
Healey, C.S.
Luccarini, C.
Peock, S.
Stoppa-Lyonnet, D.
Peterlongo, P.
Rebbeck, T.R.
Piedmonte, M.
Singer, C.F.
Friedman, E.
Thomassen, M.
Offit, K.
Hansen, T.V.
Neuhausen, S.L.
Szabo, C.I.
Blanco, I.
Garber, J.
Narod, S.A.
Weitzel, J.N.
Montagna, M.
Olah, E.
Godwin, A.K.
Yannoukakos, D.
Goldgar, D.E.
Caldes, T.
Imyanitov, E.N.
Tihomirova, L.
Arun, B.K.
Campbell, I.
Mensenkamp, A.R.
van Asperen, C.J.
van Roozendaa, K.E.
Meijers-Heijboer, H.
Collee, J.M.
Oosterwijk, J.C.
Hooning, M.J.
Rookus, M.A.
van der Luijt, R.B.
Os, T.A.
Evans, D.G.
Frost, D.
Fineberg, E.
Barwell, J.
Walker, L.
Kennedy, M.J.
Platte, R.
Davidson, R.
Ellis, S.D.
Cole, T.
Bressac-de Paillerets, B.
Buecher, B.
Damiola, F.
Faivre, L.
Frenay, M.
Sinilnikova, O.M.
Caron, O.
Giraud, S.
Mazoyer, S.
Bonadona, V.
Caux-Moncoutier, V.
Toloczko-Grabarek, A.
Gronwald, J.
Byrski, T.
Spurdle, A.B.
Bonanni, B.
Zaffaroni, D.
Giannini, G.
Bernard, L.
Dolcetti, R.
Manoukian, S.
Arnold, N.
Engel, C.
Deissler, H.
Rhiem, K.
Niederacher, D.
Pendl, H.
Sutter, C.
Wappenschmidt, B.
Borg, A.
Mein, B.
Rantala, J.
Soller, M.
Nathanson, K.L.
Domchek, S.M.
Rodriguez, G.C.
Salani, R.
Kaulich, D.G.
Tea, M.-.
Paluch, S.S.
Laitman, Y.
Skytte, A.-.
Kruse, T.A.
Jensen, U.B.
Robson, M.
Gerdes, A.-.
Ejlertsen, B.
Foretova, L.
Savage, S.A.
Lesterm, J.
Soucy, P.
Kuchenbaecker, K.B.
Olswold, C.
Cunningham, J.M.
Slager, S.
Pankratz, V.S.
Dicks, E.
Lakhani, S.R.
Couch, F.J.
Hall, P.
Monteiro, A.N.
Gayther, S.A.
Pharoah, P.D.
Reddel, R.R.
Goode, E.L.
Greene, M.H.
Easton, D.F.
Berchuck, A.
Antoniou, A.C.
Chenevix-Trench, G.
Dunning, A.M.
Study, A.C.
Study, A.O.
Consortium, K.C.
Breast, G.E.
SWE-BRCA, S.B.
Res, H.B.
BRCA1, E.S.
BRCA1, G.M.
(2013). Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature genetics,
Vol.45
(4),
pp. 371-384.
full text
Michailidou, K.
Hall, P.
Gonzalez-Neira, A.
Ghoussaini, M.
Dennis, J.
Milne, R.L.
Schmidt, M.K.
Chang-Claude, J.
Bojesen, S.E.
Bolla, M.K.
Wang, Q.
Dicks, E.
Lee, A.
Turnbull, C.
Rahman, N.
Fletcher, O.
Peto, J.
Gibson, L.
Silva, I.D.
Nevanlinna, H.
Muranen, T.A.
Aittomaki, K.
Blomqvist, C.
Czene, K.
Irwanto, A.
Liu, J.
Waisfisz, Q.
Meijers-Heijboer, H.
Adank, M.
van der Luijt, R.B.
Hein, R.
Dahmen, N.
Beckman, L.
Meindl, A.
Schmutzler, R.K.
Mueller-Myhsok, B.
Lichtner, P.
Hopper, J.L.
Southey, M.C.
Makalic, E.
Schmidt, D.F.
Uitterlinden, A.G.
Hofman, A.
Hunter, D.J.
Chanock, S.J.
Vincent, D.
Bacot, F.
Tessier, D.C.
Canisius, S.
Wessels, L.F.
Haiman, C.A.
Shah, M.
Luben, R.
Brown, J.
Luccarini, C.
Schoof, N.
Humphreys, K.
Li, J.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Couch, F.J.
Wang, X.
Vachon, C.
Stevens, K.N.
Lambrechts, D.
Moisse, M.
Paridaens, R.
Christiaens, M.-.
Rudolph, A.
Nickels, S.
Flesch-Janys, D.
Johnson, N.
Aitken, Z.
Aaltonen, K.
Heikkinen, T.
Broeks, A.
Van't Veer, L.J.
van der Schoot, C.E.
Guenel, P.
Truong, T.
Laurent-Puig, P.
Menegaux, F.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinke, B.
Pilar Zamora, M.
Arias Perez, J.I.
Pita, G.
Rosario Alonso, M.
Cox, A.
Brock, I.W.
Cross, S.S.
Reed, M.W.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Lindblom, A.
Margolin, S.
Hooning, M.J.
Hollestelle, A.
van den Ouweland, A.M.
Jager, A.
Bui, Q.M.
Stone, J.
Dite, G.S.
Apicella, C.
Tsimiklis, H.
Giles, G.G.
Severi, G.
Baglietto, L.
Fasching, P.A.
Haeberle, L.
Ekici, A.B.
Beckmann, M.W.
Brenner, H.
Mueller, H.
Arndt, V.
Stegmaier, C.
Swerdlown, A.
Ashworth, A.
Orr, N.
Jones, M.
Figueroa, J.
Lissowska, J.
Brinton, L.
Goldberg, M.S.
Labreche, F.
Dumont, M.
Winqvist, R.
Pylkas, K.
Jukkola-Vuorinen, A.
Grip, M.
Brauch, H.
Hamann, U.
Bruening, T.
Radice, P.
Peterlongo, P.
Manouldan, S.
Bonanni, B.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.
van Asperen, C.J.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Bogdanova, N.V.
Antonenkova, N.N.
Doerk, T.
Kristensen, V.N.
Anton-Culver, H.
Slager, S.
Toland, A.E.
Edge, S.
Fostira, F.
Kang, D.
Yoo, K.-.
Noh, D.-.
Matsuo, K.
Ito, H.
Iwata, H.
Sueta, A.
Wu, A.H.
Tseng, C.-.
Van den Berg, D.
Stram, D.O.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Teo, S.H.
Yip, C.H.
Phuah, S.Y.
Cornes, B.K.
Hartman, M.
Miao, H.
Lim, W.Y.
Sng, J.-.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Shen, C.-.
Hsiung, C.-.
Wu, P.-.
Ding, S.-.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Blot, W.J.
Signorello, L.B.
Cai, Q.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.
Long, J.
Simard, J.
Garcia-Closas, M.
Pharoah, P.D.
Chenevix-Trench, G.
Dunning, A.M.
Benitez, J.
Easton, D.F.
Susceptibility, B.O.
Res, H.B.
Investigators, K.
Grp, A.O.
GENICA, G.E.
(2013). Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature genetics,
Vol.45
(4),
pp. 353-361.
full text
Meyer, K.B.
O'Reilly, M.
Michailidou, K.
Carlebur, S.
Edwards, S.L.
French, J.D.
Prathalingham, R.
Dennis, J.
Bolla, M.K.
Wang, Q.
de Santiago, I.
Hopper, J.L.
Tsimiklis, H.
Apicella, C.
Southey, M.C.
Schmidt, M.K.
Broeks, A.
Van 't Veer, L.J.
Hogervorst, F.B.
Muir, K.
Lophatananon, A.
Stewart-Brown, S.
Siriwanarangsan, P.
Fasching, P.A.
Lux, M.P.
Ekici, A.B.
Beckmann, M.W.
Peto, J.
Dos Santos Silva, I.
Fletcher, O.
Johnson, N.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.J.
Miller, N.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Guénel, P.
Truong, T.
Laurent-Puig, P.
Menegaux, F.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Milne, R.L.
Zamora, M.P.
Arias, J.I.
Benitez, J.
Neuhausen, S.
Anton-Culver, H.
Ziogas, A.
Dur, C.C.
Brenner, H.
Müller, H.
Arndt, V.
Stegmaier, C.
Meindl, A.
Schmutzler, R.K.
Engel, C.
Ditsch, N.
Brauch, H.
Brüning, T.
Ko, Y.-.
GENICA Network,
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Matsuo, K.
Ito, H.
Iwata, H.
Yatabe, Y.
Dörk, T.
Helbig, S.
Bogdanova, N.V.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Chenevix-Trench, G.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Wu, A.H.
Tseng, C.-.
Van Den Berg, D.
Stram, D.O.
Lambrechts, D.
Thienpont, B.
Christiaens, M.-.
Smeets, A.
Chang-Claude, J.
Rudolph, A.
Seibold, P.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Bonanni, B.
Bernard, L.
Couch, F.J.
Olson, J.E.
Wang, X.
Purrington, K.
Giles, G.G.
Severi, G.
Baglietto, L.
McLean, C.
Haiman, C.A.
Henderson, B.E.
Schumacher, F.
Le Marchand, L.
Simard, J.
Goldberg, M.S.
Labrèche, F.
Dumont, M.
Teo, S.-.
Yip, C.-.
Phuah, S.-.
Kristensen, V.
Grenaker Alnæs, G.
Børresen-Dale, A.-.
Zheng, W.
Deming-Halverson, S.
Shrubsole, M.
Long, J.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Tchatchou, S.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.M.
García-Closas, M.
Figueroa, J.
Chanock, S.J.
Lissowska, J.
Czene, K.
Darabi, H.
Eriksson, K.
Hooning, M.J.
Martens, J.W.
van den Ouweland, A.M.
van Deurzen, C.H.
Hall, P.
Li, J.
Liu, J.
Humphreys, K.
Shu, X.-.
Lu, W.
Gao, Y.-.
Cai, H.
Cox, A.
Reed, M.W.
Blot, W.
Signorello, L.B.
Cai, Q.
Pharoah, P.D.
Ghoussaini, M.
Harrington, P.
Tyrer, J.
Kang, D.
Choi, J.-.
Park, S.K.
Noh, D.-.
Hartman, M.
Hui, M.
Lim, W.-.
Buhari, S.A.
Hamann, U.
Försti, A.
Rüdiger, T.
Ulmer, H.-.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Vachon, C.
Slager, S.
Fostira, F.
Pilarski, R.
Shen, C.-.
Hsiung, C.-.
Wu, P.-.
Hou, M.-.
Swerdlow, A.
Ashworth, A.
Orr, N.
Schoemaker, M.J.
Ponder, B.A.
Dunning, A.M.
Easton, D.F.
(2013). Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am j hum genet,
Vol.93
(6),
pp. 1046-1060.
show abstract
The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease..
Stevens, K.N.
Fredericksen, Z.
Vachon, C.M.
Wang, X.
Margolin, S.
Lindblom, A.
Nevanlinna, H.
Greco, D.
Aittomäki, K.
Blomqvist, C.
Chang-Claude, J.
Vrieling, A.
Flesch-Janys, D.
Sinn, H.-.
Wang-Gohrke, S.
Nickels, S.
Brauch, H.
GENICA Network,
Ko, Y.-.
Fischer, H.-.
Schmutzler, R.K.
Meindl, A.
Bartram, C.R.
Schott, S.
Engel, C.
Godwin, A.K.
Weaver, J.
Pathak, H.B.
Sharma, P.
Brenner, H.
Müller, H.
Arndt, V.
Stegmaier, C.
Miron, P.
Yannoukakos, D.
Stavropoulou, A.
Fountzilas, G.
Gogas, H.J.
Swann, R.
Dwek, M.
Perkins, A.
Milne, R.L.
Benítez, J.
Zamora, M.P.
Pérez, J.I.
Bojesen, S.E.
Nielsen, S.F.
Nordestgaard, B.G.
Flyger, H.
Guénel, P.
Truong, T.
Menegaux, F.
Cordina-Duverger, E.
Burwinkel, B.
Marmé, F.
Schneeweiss, A.
Sohn, C.
Sawyer, E.
Tomlinson, I.
Kerin, M.J.
Peto, J.
Johnson, N.
Fletcher, O.
Dos Santos Silva, I.
Fasching, P.A.
Beckmann, M.W.
Hartmann, A.
Ekici, A.B.
Lophatananon, A.
Muir, K.
Puttawibul, P.
Wiangnon, S.
Schmidt, M.K.
Broeks, A.
Braaf, L.M.
Rosenberg, E.H.
Hopper, J.L.
Apicella, C.
Park, D.J.
Southey, M.C.
Swerdlow, A.J.
Ashworth, A.
Orr, N.
Schoemaker, M.J.
Anton-Culver, H.
Ziogas, A.
Bernstein, L.
Dur, C.C.
Shen, C.-.
Yu, J.-.
Hsu, H.-.
Hsiung, C.-.
Hamann, U.
Dünnebier, T.
Rüdiger, T.
Ulmer, H.U.
Pharoah, P.P.
Dunning, A.M.
Humphreys, M.K.
Wang, Q.
Cox, A.
Cross, S.S.
Reed, M.W.
Hall, P.
Czene, K.
Ambrosone, C.B.
Ademuyiwa, F.
Hwang, H.
Eccles, D.M.
Garcia-Closas, M.
Figueroa, J.D.
Sherman, M.E.
Lissowska, J.
Devilee, P.
Seynaeve, C.
Tollenaar, R.A.
Hooning, M.J.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
John, E.M.
Miron, A.
Alnæs, G.G.
Kristensen, V.
Børresen-Dale, A.-.
Giles, G.G.
Baglietto, L.
McLean, C.A.
Severi, G.
Kosel, M.L.
Pankratz, V.S.
Slager, S.
Olson, J.E.
Radice, P.
Peterlongo, P.
Manoukian, S.
Barile, M.
Lambrechts, D.
Hatse, S.
Dieudonne, A.-.
Christiaens, M.-.
Chenevix-Trench, G.
kConFab Investigators,
AOCS Group,
Beesley, J.
Chen, X.
Mannermaa, A.
Kosma, V.-.
Hartikainen, J.M.
Soini, Y.
Easton, D.F.
Couch, F.J.
(2012). 19p13 1 is a triple-negative-specific breast cancer susceptibility locus. Cancer res,
Vol.72
(7),
pp. 1795-1803.
show abstract
The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05-1.15; P = 3.49 × 10(-5)] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13-1.31; P = 2.22 × 10(-7)). However, rs8170 was no longer associated with ER-negative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89-1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18-1.33; P = 3.31 × 10(-13)]. Thus, 19p13.1 is the first triple-negative-specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways..
Brennan, K.
Garcia-Closas, M.
Orr, N.
Fletcher, O.
Jones, M.
Ashworth, A.
Swerdlow, A.
Thorne, H.
KConFab Investigators,
Riboli, E.
Vineis, P.
Dorronsoro, M.
Clavel-Chapelon, F.
Panico, S.
Onland-Moret, N.C.
Trichopoulos, D.
Kaaks, R.
Khaw, K.-.
Brown, R.
Flanagan, J.M.
(2012). Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer res,
Vol.72
(9),
pp. 2304-2313.
show abstract
Few studies have evaluated the association between DNA methylation in white blood cells (WBC) and the risk of breast cancer. The evaluation of WBC DNA methylation as a biomarker of cancer risk is of particular importance as peripheral blood is often available in prospective cohorts and easier to obtain than tumor or normal tissues. Here, we used prediagnostic blood samples from three studies to analyze WBC DNA methylation of two ATM intragenic loci (ATMmvp2a and ATMmvp2b) and genome-wide DNA methylation in long interspersed nuclear element-1 (LINE1) repetitive elements. Samples were from a case-control study derived from a cohort of high-risk breast cancer families (KConFab) and nested case-control studies in two prospective cohorts: Breakthrough Generations Study (BGS) and European Prospective Investigation into Cancer and Nutrition (EPIC). Bisulfite pyrosequencing was used to quantify methylation from 640 incident cases of invasive breast cancer and 741 controls. Quintile analyses for ATMmvp2a showed an increased risk of breast cancer limited to women in the highest quintile [OR, 1.89; 95% confidence interval (CI), 1.36-2.64; P = 1.64 × 10(-4)]. We found no significant differences in estimates across studies or in analyses stratified by family history or menopausal status. However, a more consistent association was observed in younger than in older women and individually significant in KConFab and BGS, but not EPIC. We observed no differences in LINE1 or ATMmvp2b methylation between cases and controls. Together, our findings indicate that WBC DNA methylation levels at ATM could be a marker of breast cancer risk and further support the pursuit of epigenome-wide association studies of peripheral blood DNA methylation..
Johnson, N.
Walker, K.
Gibson, L.J.
Orr, N.
Folkerd, E.
Haynes, B.
Palles, C.
Coupland, B.
Schoemaker, M.
Jones, M.
Broderick, P.
Sawyer, E.
Kerin, M.
Tomlinson, I.P.
Zvelebil, M.
Chilcott-Burns, S.
Tomczyk, K.
Simpson, G.
Williamson, J.
Hillier, S.G.
Ross, G.
Houlston, R.S.
Swerdlow, A.
Ashworth, A.
Dowsett, M.
Peto, J.
Dos Santos Silva, I.
Fletcher, O.
(2012). CYP3A variation, premenopausal estrone levels, and breast cancer risk. J natl cancer inst,
Vol.104
(9),
pp. 657-669.
show abstract
BACKGROUND: Epidemiological studies have provided strong evidence for a role of endogenous sex steroids in the etiology of breast cancer. Our aim was to identify common variants in genes involved in sex steroid synthesis or metabolism that are associated with hormone levels and the risk of breast cancer in premenopausal women. METHODS: We measured urinary levels of estrone glucuronide (E1G) using a protocol specifically developed to account for cyclic variation in hormone levels during the menstrual cycle in 729 healthy premenopausal women. We genotyped 642 single-nucleotide polymorphisms (SNPs) in these women; a single SNP, rs10273424, was further tested for association with the risk of breast cancer using data from 10 551 breast cancer case patients and 17 535 control subjects. All statistical tests were two-sided. RESULTS: rs10273424, which maps approximately 50 kb centromeric to the cytochrome P450 3A (CYP3A) gene cluster at chromosome 7q22.1, was associated with a 21.8% reduction in E1G levels (95% confidence interval [CI] = 27.8% to 15.3% reduction; P = 2.7 × 10(-9)) and a modest reduction in the risk of breast cancer in case patients who were diagnosed at or before age 50 years (odds ratio [OR] = 0.91, 95% CI = 0.83 to 0.99; P = .03) but not in those diagnosed after age 50 years (OR = 1.01, 95% CI = 0.93 to 1.10; P = .82). CONCLUSIONS: Genetic variation in noncoding sequences flanking the CYP3A locus contributes to variance in premenopausal E1G levels and is associated with the risk of breast cancer in younger patients. This association may have wider implications given that the most predominantly expressed CYP3A gene, CYP3A4, is responsible for metabolism of endogenous and exogenous hormones and hormonal agents used in the treatment of breast cancer..
Dudbridge, F.
Fletcher, O.
Walker, K.
Johnson, N.
Orr, N.
Silva, I.D.
Peto, J.
(2012). Estimating Causal Effects of Genetic Risk Variants for Breast Cancer Using Marker Data from Bilateral and Familial Cases. Cancer epidemiology biomarkers & prevention,
Vol.21
(2),
pp. 262-272.
Lambrechts, D.
Truong, T.
Justenhoven, C.
Humphreys, M.K.
Wang, J.
Hopper, J.L.
Dite, G.S.
Apicella, C.
Southey, M.C.
Schmidt, M.K.
Broeks, A.
Cornelissen, S.
van Hien, R.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Milne, R.L.
Pilar Zamora, M.
Arias Perez, J.I.
Benitez, J.
Hamann, U.
Ko, Y.-.
Bruening, T.
Chang-Claude, J.
Eilber, U.
Hein, R.
Nickels, S.
Flesch-Janys, D.
Wang-Gohrke, S.
John, E.M.
Miron, A.
Winqvist, R.
Pylkas, K.
Jukkola-Vuorinen, A.
Grip, M.
Chenevix-Trench, G.
Beesley, J.
Chen, X.
Menegaux, F.
Cordina-Duverger, E.
Shen, C.-.
Yu, J.-.
Wu, P.-.
Hou, M.-.
Andrulis, I.L.
Selander, T.
Glendon, G.
Mulligan, A.M.
Anton-Culver, H.
Ziogas, A.
Muir, K.R.
Lophatananon, A.
Rattanamongkongul, S.
Puttawibul, P.
Jones, M.
Orr, N.
Ashworth, A.
Swerdlow, A.
Severi, G.
Baglietto, L.
Giles, G.
Southey, M.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Yesilyurt, B.T.
Neven, P.
Paridaens, R.
Wildiers, H.
Brenner, H.
Mueller, H.
Arndt, V.
Stegmaier, C.
Meindl, A.
Schott, S.
Bartram, C.R.
Schmutzler, R.K.
Cox, A.
Brock, I.W.
Elliott, G.
Cross, S.S.
Fasching, P.A.
Schulz-Wendtland, R.
Ekici, A.B.
Beckmann, M.W.
Fletcher, O.
Johnson, N.
Silva, I.D.
Peto, J.
Nevanlinna, H.
Muranen, T.A.
Aittomaki, K.
Blomqvist, C.
Doerk, T.
Schuermann, P.
Bremer, M.
Hillemanns, P.
Bogdanova, N.V.
Antonenkova, N.N.
Rogov, Y.I.
Karstens, J.H.
Khusnutdinova, E.
Bermisheva, M.
Prokofieva, D.
Gancev, S.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Nordestgaard, B.G.
Bojesen, S.E.
Lanng, C.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Radice, P.
Peterlongo, P.
Manoukian, S.
Bernard, L.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Alnaes, G.G.
Kristensen, V.
Borresen-Dale, A.-.
Devilee, P.
Tollenaar, R.A.
Seynaeve, C.M.
Hooning, M.J.
Garcia-Closas, M.
Chanock, S.J.
Lissowska, J.
Sherman, M.E.
Hall, P.
Liu, J.
Czene, K.
Kang, D.
Yoo, K.-.
Noh, D.-.
Lindblom, A.
Margolin, S.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
Guenel, P.
Brauch, H.
Network, G.E.
Investigators, K.
Grp, A.O.
(2012). 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human mutation,
Vol.33
(7),
pp. 1123-1132.
full text
Warren, H.
Dudbridge, F.
Fletcher, O.
Orr, N.
Johnson, N.
Hopper, J.L.
Apicella, C.
Southey, M.C.
Mahmoodi, M.
Schmidt, M.K.
Broeks, A.
Cornelissen, S.
Braaf, L.M.
Muir, K.R.
Lophatananon, A.
Chaiwerawattana, A.
Wiangnon, S.
Fasching, P.A.
Beckmann, M.W.
Ekici, A.B.
Schulz-Wendtland, R.
Sawyer, E.J.
Tomlinson, I.
Kerin, M.
Burwinkel, B.
Marme, F.
Schneeweiss, A.
Sohn, C.
Guénel, P.
Truong, T.
Laurent-Puig, P.
Mulot, C.
Bojesen, S.E.
Nielsen, S.F.
Flyger, H.
Nordestgaard, B.G.
Milne, R.L.
Benítez, J.
Arias-Pérez, J.-.
Zamora, M.P.
Anton-Culver, H.
Ziogas, A.
Bernstein, L.
Dur, C.C.
Brenner, H.
Müller, H.
Arndt, V.
Langheinz, A.
Meindl, A.
Golatta, M.
Bartram, C.R.
Schmutzler, R.K.
Brauch, H.
Justenhoven, C.
Brüning, T.
GENICA Network,
Chang-Claude, J.
Wang-Gohrke, S.
Eilber, U.
Dörk, T.
Schürmann, P.
Bremer, M.
Hillemanns, P.
Nevanlinna, H.
Muranen, T.A.
Aittomäki, K.
Blomqvist, C.
Bogdanova, N.
Antonenkova, N.
Rogov, Y.
Bermisheva, M.
Prokofyeva, D.
Zinnatullina, G.
Khusnutdinova, E.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kosma, V.-.
Hartikainen, J.M.
Kataja, V.
Chenevix-Trench, G.
Beesley, J.
Chen, X.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Lambrechts, D.
Smeets, A.
Paridaens, R.
Weltens, C.
Flesch-Janys, D.
Buck, K.
Behrens, S.
Peterlongo, P.
Bernard, L.
Manoukian, S.
Radice, P.
Couch, F.J.
Vachon, C.
Wang, X.
Olson, J.
Giles, G.
Baglietto, L.
McLean, C.A.
Severi, G.
John, E.M.
Miron, A.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Andrulis, I.L.
Knight, J.A.
Mulligan, A.M.
Weerasooriya, N.
Devilee, P.
Tollenaar, R.A.
Martens, J.W.
Seynaeve, C.M.
Hooning, M.J.
Hollestelle, A.
Jager, A.
Tilanus-Linthorst, M.M.
Hall, P.
Czene, K.
Liu, J.
Li, J.
Cox, A.
Cross, S.S.
Brock, I.W.
Reed, M.W.
Pharoah, P.
Blows, F.M.
Dunning, A.M.
Ghoussaini, M.
Ashworth, A.
Swerdlow, A.
Jones, M.
Schoemaker, M.
Easton, D.F.
Humphreys, M.
Wang, Q.
Peto, J.
dos-Santos-Silva, I.
(2012). 9q31 2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer: evidence from the Breast Cancer Association Consortium. Cancer epidemiol biomarkers prev,
Vol.21
(10),
pp. 1783-1791.
show abstract
BACKGROUND: Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686). METHODS: To further investigate the rs865686-breast cancer association, we conducted a replication study within the Breast Cancer Association Consortium, which comprises 37 case-control studies (48,394 cases, 50,836 controls). RESULTS: This replication study provides additional strong evidence of an inverse association between rs865686 and breast cancer risk [study-adjusted per G-allele OR, 0.90; 95% confidence interval (CI), 0.88; 0.91, P = 2.01 × 10(-29)] among women of European ancestry. There were ethnic differences in the estimated minor (G)-allele frequency among controls [0.09, 0.30, and 0.38 among, respectively, Asians, Eastern Europeans, and other Europeans; P for heterogeneity (P(het)) = 1.3 × 10(-143)], but no evidence of ethnic differences in per allele OR (P(het) = 0.43). rs865686 was associated with estrogen receptor-positive (ER(+)) disease (per G-allele OR, 0.89; 95% CI, 0.86-0.91; P = 3.13 × 10(-22)) but less strongly, if at all, with ER-negative (ER(-)) disease (OR, 0.98; 95% CI, 0.94-1.02; P = 0.26; P(het) = 1.16 × 10(-6)), with no evidence of independent heterogeneity by progesterone receptor or HER2 status. The strength of the breast cancer association decreased with increasing age at diagnosis, with case-only analysis showing a trend in the number of copies of the G allele with increasing age at diagnosis (P for linear trend = 0.0095), but only among women with ER(+) tumors. CONCLUSIONS: This study is the first to show that rs865686 is a susceptibility marker for ER(+) breast cancer. IMPACT: The findings further support the view that genetic susceptibility varies according to tumor subtype..
Siddiq, A.
Couch, F.J.
Chen, G.K.
Lindstrom, S.
Eccles, D.
Millikan, R.C.
Michailidou, K.
Stram, D.O.
Beckmann, L.
Rhie, S.K.
Ambrosone, C.B.
Aittomaki, K.
Amiano, P.
Apicella, C.
Baglietto, L.
Bandera, E.V.
Beckmann, M.W.
Berg, C.D.
Bernstein, L.
Blomqvist, C.
Brauch, H.
Brinton, L.
Bui, Q.M.
Buring, J.E.
Buys, S.S.
Campa, D.
Carpenter, J.E.
Chasman, D.I.
Chang-Claude, J.
Chen, C.
Clavel-Chapelon, F.
Cox, A.
Cross, S.S.
Czene, K.
Deming, S.L.
Diasio, R.B.
Diver, W.R.
Dunning, A.M.
Durcan, L.
Ekici, A.B.
Fasching, P.A.
Feigelson, H.S.
Fejerman, L.
Figueroa, J.D.
Fletcher, O.
Flesch-Janys, D.
Gaudet, M.M.
Gerty, S.M.
Rodriguez-Gil, J.L.
Giles, G.G.
van Gils, C.H.
Godwin, A.K.
Graham, N.
Greco, D.
Hall, P.
Hankinson, S.E.
Hartmann, A.
Hein, R.
Heinz, J.
Hoover, R.N.
Hopper, J.L.
Hu, J.J.
Huntsman, S.
Ingles, S.A.
Irwanto, A.
Isaacs, C.
Jacobs, K.B.
John, E.M.
Justenhoven, C.
Kaaks, R.
Kolonel, L.N.
Coetzee, G.A.
Lathrop, M.
Le Marchand, L.
Lee, A.M.
Lee, I.-.
Lesnick, T.
Lichtner, P.
Liu, J.
Lund, E.
Makalic, E.
Martin, N.G.
McLean, C.A.
Meijers-Heijboer, H.
Meindl, A.
Miron, P.
Monroe, K.R.
Montgomery, G.W.
Mueller-Myhsok, B.
Nickels, S.
Nyante, S.J.
Olswold, C.
Overvad, K.
Palli, D.
Park, D.J.
Palmer, J.R.
Pathak, H.
Peto, J.
Pharoah, P.
Rahman, N.
Rivadeneira, F.
Schmidt, D.F.
Schmutzler, R.K.
Slager, S.
Southey, M.C.
Stevens, K.N.
Sinn, H.-.
Press, M.F.
Ross, E.
Riboli, E.
Ridker, P.M.
Schumacher, F.R.
Severi, G.
Silva, I.D.
Stone, J.
Sund, M.
Tapper, W.J.
Thun, M.J.
Travis, R.C.
Turnbull, C.
Uitterlinden, A.G.
Waisfisz, Q.
Wang, X.
Wang, Z.
Weaver, J.
Schulz-Wendtland, R.
Wilkens, L.R.
Van Den Berg, D.
Zheng, W.
Ziegler, R.G.
Ziv, E.
Nevanlinna, H.
Easton, D.F.
Hunter, D.J.
Henderson, B.E.
Chanock, S.J.
Garcia-Closas, M.
Kraft, P.
Haiman, C.A.
Vachon, C.M.
Bank, A.B.
Study, F.B.
Consortium, G.E.
(2012). A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human molecular genetics,
Vol.21
(24),
pp. 5373-5384.
Brennan, K.
Garcias-Closas, M.
Orr, N.
Fletcher, O.
Jones, M.
Ashworth, A.
Swerdlow, A.
Riboli, E.
Vineis, P.
Dorronsosro, M.
Clavel, F.
Panico, S.
Onland-Moret, N.C.
Trichopoulos, D.
Kaaks, R.
Khaw, K.-.
Brown, R.
Flanagan, J.M.
Investigators, K.
(2012). Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer research,
Vol.72.
Ross, G.M.
Johnson, N.
Orr, N.
Walker, K.
Gibson, L.
Folkerd, E.
Haynes, B.
Palles, C.
Coupland, B.
Shoemaker, M.
Jones, M.
Broderick, P.
Sawyer, E.
Kerin, M.
Tomlinson, I.
Zvelebil, M.
Chilcott-Burns, S.
Tomczyk, K.
Simpson, G.
Willianson, J.
Hillier, S.
Houlston, R.
Swerdlow, A.
Ashworth, A.
Dowsett, M.
Peto, J.
dos Santos, I.
Fletcher, O.
(2012). Impact of CYP3A variation on estrone levels and breast cancer risk. Cancer research,
Vol.72.
Ghoussaini, M.
Fletcher, O.
Michailidou, K.
Turnbull, C.
Schmidt, M.K.
Dicks, E.
Dennis, J.
Wang, Q.
Humphreys, M.K.
Luccarini, C.
Baynes, C.
Conroy, D.
Maranian, M.
Ahmed, S.
Driver, K.
Johnson, N.
Orr, N.
dos Santos Silva, I.
Waisfisz, Q.
Meijers-Heijboer, H.
Uitterlinden, A.G.
Rivadeneira, F.
Netherlands Collaborative Group on Hereditary Breast and Ovarian Cancer (HEBON),
Hall, P.
Czene, K.
Irwanto, A.
Liu, J.
Nevanlinna, H.
Aittomäki, K.
Blomqvist, C.
Meindl, A.
Schmutzler, R.K.
Müller-Myhsok, B.
Lichtner, P.
Chang-Claude, J.
Hein, R.
Nickels, S.
Flesch-Janys, D.
Tsimiklis, H.
Makalic, E.
Schmidt, D.
Bui, M.
Hopper, J.L.
Apicella, C.
Park, D.J.
Southey, M.
Hunter, D.J.
Chanock, S.J.
Broeks, A.
Verhoef, S.
Hogervorst, F.B.
Fasching, P.A.
Lux, M.P.
Beckmann, M.W.
Ekici, A.B.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Guénel, P.
Truong, T.
Cordina-Duverger, E.
Menegaux, F.
Bojesen, S.E.
Nordestgaard, B.G.
Nielsen, S.F.
Flyger, H.
Milne, R.L.
Alonso, M.R.
González-Neira, A.
Benítez, J.
Anton-Culver, H.
Ziogas, A.
Bernstein, L.
Dur, C.C.
Brenner, H.
Müller, H.
Arndt, V.
Stegmaier, C.
Familial Breast Cancer Study (FBCS),
Justenhoven, C.
Brauch, H.
Brüning, T.
Gene Environment Interaction of Breast Cancer in Germany (GENICA) Network,
Wang-Gohrke, S.
Eilber, U.
Dörk, T.
Schürmann, P.
Bremer, M.
Hillemanns, P.
Bogdanova, N.V.
Antonenkova, N.N.
Rogov, Y.I.
Karstens, J.H.
Bermisheva, M.
Prokofieva, D.
Khusnutdinova, E.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Lambrechts, D.
Yesilyurt, B.T.
Floris, G.
Leunen, K.
Manoukian, S.
Bonanni, B.
Fortuzzi, S.
Peterlongo, P.
Couch, F.J.
Wang, X.
Stevens, K.
Lee, A.
Giles, G.G.
Baglietto, L.
Severi, G.
McLean, C.
Alnaes, G.G.
Kristensen, V.
Børrensen-Dale, A.-.
John, E.M.
Miron, A.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Kauppila, S.
Andrulis, I.L.
Glendon, G.
Mulligan, A.M.
Devilee, P.
van Asperen, C.J.
Tollenaar, R.A.
Seynaeve, C.
Figueroa, J.D.
Garcia-Closas, M.
Brinton, L.
Lissowska, J.
Hooning, M.J.
Hollestelle, A.
Oldenburg, R.A.
van den Ouweland, A.M.
Cox, A.
Reed, M.W.
Shah, M.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Jones, M.
Schoemaker, M.
Ashworth, A.
Swerdlow, A.
Beesley, J.
Chen, X.
kConFab Investigators,
Australian Ovarian Cancer Study Group,
Muir, K.R.
Lophatananon, A.
Rattanamongkongul, S.
Chaiwerawattana, A.
Kang, D.
Yoo, K.-.
Noh, D.-.
Shen, C.-.
Yu, J.-.
Wu, P.-.
Hsiung, C.-.
Perkins, A.
Swann, R.
Velentzis, L.
Eccles, D.M.
Tapper, W.J.
Gerty, S.M.
Graham, N.J.
Ponder, B.A.
Chenevix-Trench, G.
Pharoah, P.D.
Lathrop, M.
Dunning, A.M.
Rahman, N.
Peto, J.
Easton, D.F.
(2012). Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat genet,
Vol.44
(3),
pp. 312-318.
show abstract
full text
Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth..
Kirchhoff, T.
Gaudet, M.M.
Antoniou, A.C.
McGuffog, L.
Humphreys, M.K.
Dunning, A.M.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Dork, T.
Schuermann, P.
Karstens, J.H.
Hillemanns, P.
Couch, F.J.
Olson, J.
Vachon, C.
Wang, X.
Cox, A.
Brock, I.
Elliott, G.
Reed, M.W.
Burwinkel, B.
Meindl, A.
Brauch, H.
Hamann, U.
Ko, Y.-.
Broeks, A.
Schmidt, M.K.
Van 't Veer, L.J.
Braaf, L.M.
Johnson, N.
Fletcher, O.
Gibson, L.
Peto, J.
Turnbull, C.
Seal, S.
Renwick, A.
Rahman, N.
Wu, P.-.
Yu, J.-.
Hsiung, C.-.
Shen, C.-.
Southey, M.C.
Hopper, J.L.
Hammet, F.
Van Dorpe, T.
Dieudonne, A.-.
Hatse, S.
Lambrechts, D.
Andrulis, I.L.
Bogdanova, N.
Antonenkova, N.
Rogov, J.I.
Prokofieva, D.
Bermisheva, M.
Khusnutdinova, E.
van Asperen, C.J.
Tollenaar, R.A.
Hooning, M.J.
Devilee, P.
Margolin, S.
Lindblom, A.
Milne, R.L.
Ignacio Arias, J.
Pilar Zamora, M.
Benitez, J.
Severi, G.
Baglietto, L.
Giles, G.G.
Spurdle, A.B.
Beesley, J.
Chen, X.
Holland, H.
Healey, S.
Wang-Gohrke, S.
Chang-Claude, J.
Mannermaa, A.
Kosma, V.-.
Kauppinen, J.
Kataja, V.
Agnarsson, B.A.
Caligo, M.A.
Godwin, A.K.
Nevanlinna, H.
Heikkinen, T.
Fredericksen, Z.
Lindor, N.
Nathanson, K.L.
Domchek, S.M.
Loman, N.
Karlsson, P.
Askmalm, M.S.
Melin, B.
von Wachenfeldt, A.
Hogervorst, F.B.
Verheus, M.
Rookus, M.A.
Seynaeve, C.
Oldenburg, R.A.
Ligtenberg, M.J.
Ausems, M.G.
Aalfs, C.M.
Gille, H.J.
Wijnen, J.T.
Garcia, E.B.
Peock, S.
Cook, M.
Oliver, C.T.
Frost, D.
Luccarini, C.
Pichert, G.
Davidson, R.
Chu, C.
Eccles, D.
Ong, K.-.
Cook, J.
Douglas, F.
Hodgson, S.
Evans, D.G.
Eeles, R.
Gold, B.
Pharoah, P.D.
Offit, K.
Chenevix-Trench, G.
Easton, D.F.
Network, G.E.
kConFab,
Grp, A.O.
SWE-BRCA,
HEBON,
EMBRACE,
BCAC-CIMBA,
(2012). Breast Cancer Risk and 6q22 33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2. Plos one,
Vol.7
(6).
Orr, N.
Lemnrau, A.
Cooke, R.
Fletcher, O.
Tomczyk, K.
Jones, M.
Johnson, N.
Lord, C.J.
Mitsopoulos, C.
Zvelebil, M.
McDade, S.S.
Buck, G.
Blancher, C.
Consortium, K.C.
Trainer, A.H.
James, P.A.
Bojesen, S.E.
Bokmand, S.
Nevanlinna, H.
Mattson, J.
Friedman, E.
Laitman, Y.
Palli, D.
Masala, G.
Zanna, I.
Ottini, L.
Giannini, G.
Hollestelle, A.
Ouweland, A.M.
Novakovic, S.
Krajc, M.
Gago-Dominguez, M.
Castelao, J.E.
Olsson, H.
Hedenfalk, I.
Easton, D.F.
Pharoah, P.D.
Dunning, A.M.
Bishop, D.T.
Neuhausen, S.L.
Steele, L.
Houlston, R.S.
Garcia-Closas, M.
Ashworth, A.
Swerdlow, A.J.
(2012). Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat genet,
Vol.44,
pp. 1182-1184.
show abstract
full text
We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 x 10(-13); odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 x 10(-15); OR = 1.50)..
Hein, R.
Maranian, M.
Hopper, J.L.
Kapuscinski, M.K.
Southey, M.C.
Park, D.J.
Schmidt, M.K.
Broeks, A.
Hogervorst, F.B.
Bueno-de-Mesquita, H.B.
Muir, K.R.
Lophatananon, A.
Rattanamongkongul, S.
Puttawibul, P.
Fasching, P.A.
Hein, A.
Ekici, A.B.
Beckmann, M.W.
Fletcher, O.
Johnson, N.
dos Santos Silva, I.
Peto, J.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Marmee, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Guénel, P.
Cordina-Duverger, E.
Menegaux, F.
Truong, T.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.
Milne, R.L.
Perez, J.I.
Zamora, M.P.
Benítez, J.
Anton-Culver, H.
Ziogas, A.
Bernstein, L.
Clarke, C.A.
Brenner, H.
Müller, H.
Arndt, V.
Stegmaier, C.
Rahman, N.
Seal, S.
Turnbull, C.
Renwick, A.
Meindl, A.
Schott, S.
Bartram, C.R.
Schmutzler, R.K.
Brauch, H.
Hamann, U.
Ko, Y.-.
GENICA Network,
Wang-Gohrke, S.
Dörk, T.
Schürmann, P.
Karstens, J.H.
Hillemanns, P.
Nevanlinna, H.
Heikkinen, T.
Aittomäki, K.
Blomqvist, C.
Bogdanova, N.V.
Zalutsky, I.V.
Antonenkova, N.N.
Bermisheva, M.
Prokovieva, D.
Farahtdinova, A.
Khusnutdinova, E.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.
Chen, X.
Beesley, J.
Kconfab Investigators,
AOCS Group,
Lambrechts, D.
Zhao, H.
Neven, P.
Wildiers, H.
Nickels, S.
Flesch-Janys, D.
Radice, P.
Peterlongo, P.
Manoukian, S.
Barile, M.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Giles, G.G.
Baglietto, L.
McLean, C.A.
Severi, G.
Offit, K.
Robson, M.
Gaudet, M.M.
Vijai, J.
Alnæs, G.G.
Kristensen, V.
Børresen-Dale, A.-.
John, E.M.
Miron, A.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Figueroa, J.D.
García-Closas, M.
Lissowska, J.
Sherman, M.E.
Hooning, M.
Martens, J.W.
Seynaeve, C.
Collée, M.
Hall, P.
Humpreys, K.
Czene, K.
Liu, J.
Cox, A.
Brock, I.W.
Cross, S.S.
Reed, M.W.
Ahmed, S.
Ghoussaini, M.
Pharoah, P.D.
Kang, D.
Yoo, K.-.
Noh, D.-.
Jakubowska, A.
Jaworska, K.
Durda, K.
Złowocka, E.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Shen, C.-.
Yu, J.-.
Hsu, H.-.
Hou, M.-.
Orr, N.
Schoemaker, M.
Ashworth, A.
Swerdlow, A.
Trentham-Dietz, A.
Newcomb, P.A.
Titus, L.
Egan, K.M.
Chenevix-Trench, G.
Antoniou, A.C.
Humphreys, M.K.
Morrison, J.
Chang-Claude, J.
Easton, D.F.
Dunning, A.M.
(2012). Comparison of 6q25 breast cancer hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). Plos one,
Vol.7
(8),
p. e42380.
show abstract
The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER-) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26-1.48), p = 7.6 × 10(-14) in Asians and 1.09 (95% CI 1.07-1.11), p = 6.8 × 10(-18) in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19-1.41), p = 1.2 × 10(-9) in Asians and 1.12 (95% CI 1.08-1.17), p = 3.8 × 10(-9) in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER- than ER+ tumours in Europeans [OR (ER-) = 1.20 (95% CI 1.15-1.25), p = 1.8 × 10(-17) versus OR (ER+) = 1.07 (95% CI 1.04-1.1), p = 1.3 × 10(-7), p(heterogeneity) = 5.1 × 10(-6)]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER- tumours..
Stevens, K.N.
Vachon, C.M.
Lee, A.M.
Slager, S.
Lesnick, T.
Olswold, C.
Fasching, P.A.
Miron, P.
Eccles, D.
Carpenter, J.E.
Godwin, A.K.
Ambrosone, C.
Winqvist, R.
Brauch, H.
Schmidt, M.K.
Cox, A.
Cross, S.S.
Sawyer, E.
Hartmann, A.
Beckmann, M.W.
Schulz-Wendtland, R.
Ekici, A.B.
Tapper, W.J.
Gerty, S.M.
Durcan, L.
Graham, N.
Hein, R.
Nickels, S.
Flesch-Janys, D.
Heinz, J.
Sinn, H.-.
Konstantopoulou, I.
Fostira, F.
Pectasides, D.
Dimopoulos, A.M.
Fountzilas, G.
Clarke, C.L.
Balleine, R.
Olson, J.E.
Fredericksen, Z.
Diasio, R.B.
Pathak, H.
Ross, E.
Weaver, J.
Ruediger, T.
Forsti, A.
Duennebier, T.
Ademuyiwa, F.
Kulkarni, S.
Pylkaes, K.
Jukkola-Vuorinen, A.
Ko, Y.-.
Van Limbergen, E.
Janssen, H.
Peto, J.
Fletcher, O.
Giles, G.G.
Baglietto, L.
Verhoef, S.
Tomlinson, I.
Kosma, V.-.
Beesley, J.
Greco, D.
Blomqvist, C.
Irwanto, A.
Liu, J.
Blows, F.M.
Dawson, S.-.
Margolin, S.
Mannermaa, A.
Martin, N.G.
Montgomery, G.W.
Lambrechts, D.
Silva, I.D.
Severi, G.
Hamann, U.
Pharoah, P.
Easton, D.F.
Chang-Claude, J.
Yannoukakos, D.
Nevanlinna, H.
Wang, X.
Couch, F.J.
(2011). Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer. Cancer research,
Vol.71
(19),
pp. 6240-10.
Figueroa, J.D.
Garcia-Closas, M.
Humphreys, M.
Platte, R.
Hopper, J.L.
Southey, M.C.
Apicella, C.
Hammet, F.
Schmidt, M.K.
Broeks, A.
Tollenaar, R.A.
Van't Veer, L.J.
Fasching, P.A.
Beckmann, M.W.
Ekici, A.B.
Strick, R.
Peto, J.
dos Santos Silva, I.
Fletcher, O.
Johnson, N.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Burwinkel, B.
Marme, F.
Schneeweiss, A.
Sohn, C.
Bojesen, S.
Flyger, H.
Nordestgaard, B.G.
Benítez, J.
Milne, R.L.
Ignacio Arias, J.
Zamora, M.P.
Brenner, H.
Müller, H.
Arndt, V.
Rahman, N.
Turnbull, C.
Seal, S.
Renwick, A.
Brauch, H.
Justenhoven, C.
Brüning, T.
GENICA Network,
Chang-Claude, J.
Hein, R.
Wang-Gohrke, S.
Dörk, T.
Schürmann, P.
Bremer, M.
Hillemanns, P.
Nevanlinna, H.
Heikkinen, T.
Aittomäki, K.
Blomqvist, C.
Bogdanova, N.
Antonenkova, N.
Rogov, Y.I.
Karstens, J.H.
Bermisheva, M.
Prokofieva, D.
Gantcev, S.H.
Khusnutdinova, E.
Lindblom, A.
Margolin, S.
Chenevix-Trench, G.
Beesley, J.
Chen, X.
kConFab AOCS Management Group,
Mannermaa, A.
Kosma, V.-.
Soini, Y.
Kataja, V.
Lambrechts, D.
Yesilyurt, B.T.
Chrisiaens, M.-.
Peeters, S.
Radice, P.
Peterlongo, P.
Manoukian, S.
Barile, M.
Couch, F.
Lee, A.M.
Diasio, R.
Wang, X.
Giles, G.G.
Severi, G.
Baglietto, L.
Maclean, C.
Offit, K.
Robson, M.
Joseph, V.
Gaudet, M.
John, E.M.
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Andrulis, I.
Knight, J.A.
Mulligan, A.M.
O'Malley, F.P.
Brinton, L.A.
Sherman, M.E.
Lissowska, J.
Chanock, S.J.
Hooning, M.
Martens, J.W.
van den Ouweland, A.M.
Collée, J.M.
Hall, P.
Czene, K.
Cox, A.
Brock, I.W.
Reed, M.W.
Cross, S.S.
Pharoah, P.
Dunning, A.M.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Shen, C.-.
Ding, S.-.
Hsu, H.-.
Yu, J.-.
Anton-Culver, H.
Ziogas, A.
Ashworth, A.
Swerdlow, A.
Jones, M.
Orr, N.
Trentham-Dietz, A.
Egan, K.
Newcomb, P.
Titus-Ernstoff, L.
Easton, D.
Spurdle, A.B.
(2011). Associations of common variants at 1p11 2 and 14q24 1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. Hum mol genet,
Vol.20
(23),
pp. 4693-4706.
show abstract
A genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) at 1p11.2 and 14q24.1 (RAD51L1) as breast cancer susceptibility loci. The initial GWAS suggested stronger effects for both loci for estrogen receptor (ER)-positive tumors. Using data from the Breast Cancer Association Consortium (BCAC), we sought to determine whether risks differ by ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), grade, node status, tumor size, and ductal or lobular morphology. We genotyped rs11249433 at 1p.11.2, and two highly correlated SNPs rs999737 and rs10483813 (r(2)= 0.98) at 14q24.1 (RAD51L1), for up to 46 036 invasive breast cancer cases and 46 930 controls from 39 studies. Analyses by tumor characteristics focused on subjects reporting to be white women of European ancestry and were based on 25 458 cases, of which 87% had ER data. The SNP at 1p11.2 showed significantly stronger associations with ER-positive tumors [per-allele odds ratio (OR) for ER-positive tumors was 1.13, 95% CI = 1.10-1.16 and, for ER-negative tumors, OR was 1.03, 95% CI = 0.98-1.07, case-only P-heterogeneity = 7.6 × 10(-5)]. The association with ER-positive tumors was stronger for tumors of lower grade (case-only P= 6.7 × 10(-3)) and lobular histology (case-only P= 0.01). SNPs at 14q24.1 were associated with risk for most tumor subtypes evaluated, including triple-negative breast cancers, which has not been described previously. Our results underscore the need for large pooling efforts with tumor pathology data to help refine risk estimates for SNP associations with susceptibility to different subtypes of breast cancer..
Fletcher, O.
Johnson, N.
Orr, N.
Hosking, F.J.
Gibson, L.J.
Walker, K.
Zelenika, D.
Gut, I.
Heath, S.
Palles, C.
Coupland, B.
Broderick, P.
Schoemaker, M.
Jones, M.
Williamson, J.
Chilcott-Burns, S.
Tomczyk, K.
Simpson, G.
Jacobs, K.B.
Chanock, S.J.
Hunter, D.J.
Tomlinson, I.P.
Swerdlow, A.
Ashworth, A.
Ross, G.
dos Santos Silva, I.
Lathrop, M.
Houlston, R.S.
Peto, J.
(2011). Novel breast cancer susceptibility locus at 9q31 2: results of a genome-wide association study. J natl cancer inst,
Vol.103
(5),
pp. 425-435.
show abstract
BACKGROUND: Genome-wide association studies have identified several common genetic variants associated with breast cancer risk. It is likely, however, that a substantial proportion of such loci have not yet been discovered. METHODS: We compared 296,114 tagging single-nucleotide polymorphisms in 1694 breast cancer case subjects (92% with two primary cancers or at least two affected first-degree relatives) and 2365 control subjects, with validation in three independent series totaling 11,880 case subjects and 12,487 control subjects. Odds ratios (ORs) and associated 95% confidence intervals (CIs) in each stage and all stages combined were calculated using unconditional logistic regression. Heterogeneity was evaluated with Cochran Q and I(2) statistics. All statistical tests were two-sided. RESULTS: We identified a novel risk locus for breast cancer at 9q31.2 (rs865686: OR = 0.89, 95% CI = 0.85 to 0.92, P = 1.75 × 10(-10)). This single-nucleotide polymorphism maps to a gene desert, the nearest genes being Kruppel-like factor 4 (KLF4, 636 kb centromeric), RAD23 homolog B (RAD23B, 794 kb centromeric), and actin-like 7A (ACTL7A, 736 kb telomeric). We also identified two variants (rs3734805 and rs9383938) mapping to 6q25.1 estrogen receptor 1 (ESR1), which were associated with breast cancer in subjects of northern European ancestry (rs3734805: OR = 1.19, 95% CI = 1.11 to 1.27, P = 1.35 × 10(-7); rs9383938: OR = 1.18, 95% CI = 1.11 to 1.26, P = 1.41 × 10(-7)). A variant mapping to 10q26.13, approximately 300 kb telomeric to the established risk locus within the second intron of FGFR2, was also associated with breast cancer risk, although not at genome-wide statistical significance (rs10510102: OR = 1.12, 95% CI = 1.07 to 1.17, P = 1.58 × 10(-6)). CONCLUSIONS: These findings provide further evidence on the role of genetic variation in the etiology of breast cancer. Fine mapping will be needed to identify causal variants and to determine their functional effects..
Orr, N.
Cooke, R.
Jones, M.
Fletcher, O.
Dudbridge, F.
Chilcott-Burns, S.
Tomczyk, K.
Broderick, P.
Houlston, R.
Ashworth, A.
Swerdlow, A.
(2011). Genetic variants at chromosomes 2q35, 5p12, 6q25 1, 10q26 13, and 16q12 1 influence the risk of breast cancer in men. Plos genet,
Vol.7
(9),
p. e1002290.
show abstract
Male breast cancer accounts for approximately 1% of all breast cancer. To date, risk factors for male breast cancer are poorly defined, but certain risk factors and genetic features appear common to both male and female breast cancer. Genome-wide association studies (GWAS) have recently identified common single nucleotide polymorphisms (SNPs) that influence female breast cancer risk; 12 of these have been independently replicated. To examine if these variants contribute to male breast cancer risk, we genotyped 433 male breast cancer cases and 1,569 controls. Five SNPs showed a statistically significant association with male breast cancer: rs13387042 (2q35) (odds ratio (OR) = 1.30, p = 7.98×10⁻⁴), rs10941679 (5p12) (OR = 1.26, p = 0.007), rs9383938 (6q25.1) (OR = 1.39, p = 0.004), rs2981579 (FGFR2) (OR = 1.18, p = 0.03), and rs3803662 (TOX3) (OR = 1.48, p = 4.04×10⁻⁶). Comparing the ORs for male breast cancer with the published ORs for female breast cancer, three SNPs--rs13387042 (2q35), rs3803662 (TOX3), and rs6504950 (COX11)--showed significant differences in ORs (p<0.05) between sexes. Breast cancer is a heterogeneous disease; the relative risks associated with loci identified to date show subtype and, based on these data, gender specificity. Additional studies of well-defined patient subgroups could provide further insight into the biological basis of breast cancer development..
Milne, R.L.
Goode, E.L.
García-Closas, M.
Couch, F.J.
Severi, G.
Hein, R.
Fredericksen, Z.
Malats, N.
Zamora, M.P.
Arias Pérez, J.I.
Benítez, J.
Dörk, T.
Schürmann, P.
Karstens, J.H.
Hillemanns, P.
Cox, A.
Brock, I.W.
Elliot, G.
Cross, S.S.
Seal, S.
Turnbull, C.
Renwick, A.
Rahman, N.
Shen, C.-.
Yu, J.-.
Huang, C.-.
Hou, M.-.
Nordestgaard, B.G.
Bojesen, S.E.
Lanng, C.
Grenaker Alnæs, G.
Kristensen, V.
Børrensen-Dale, A.-.
Hopper, J.L.
Dite, G.S.
Apicella, C.
Southey, M.C.
Lambrechts, D.
Yesilyurt, B.T.
Floris, G.
Leunen, K.
Sangrajrang, S.
Gaborieau, V.
Brennan, P.
McKay, J.
Chang-Claude, J.
Wang-Gohrke, S.
Radice, P.
Peterlongo, P.
Manoukian, S.
Barile, M.
Giles, G.G.
Baglietto, L.
John, E.M.
Miron, A.
Chanock, S.J.
Lissowska, J.
Sherman, M.E.
Figueroa, J.D.
Bogdanova, N.V.
Antonenkova, N.N.
Zalutsky, I.V.
Rogov, Y.I.
Fasching, P.A.
Bayer, C.M.
Ekici, A.B.
Beckmann, M.W.
Brenner, H.
Müller, H.
Arndt, V.
Stegmaier, C.
Andrulis, I.L.
Knight, J.A.
Glendon, G.
Mulligan, A.M.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Hartikainen, J.M.
Meindl, A.
Heil, J.
Bartram, C.R.
Schmutzler, R.K.
Thomas, G.D.
Hoover, R.N.
Fletcher, O.
Gibson, L.J.
dos Santos Silva, I.
Peto, J.
Nickels, S.
Flesch-Janys, D.
Anton-Culver, H.
Ziogas, A.
Sawyer, E.
Tomlinson, I.
Kerin, M.
Miller, N.
Schmidt, M.K.
Broeks, A.
Van 't Veer, L.J.
Tollenaar, R.A.
Pharoah, P.D.
Dunning, A.M.
Pooley, K.A.
Marme, F.
Schneeweiss, A.
Sohn, C.
Burwinkel, B.
Jakubowska, A.
Lubinski, J.
Jaworska, K.
Durda, K.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Hunter, D.J.
Hankinson, S.E.
Kraft, P.
Lindstrom, S.
Chen, X.
Beesley, J.
Hamann, U.
Harth, V.
Justenhoven, C.
GENICA Network,
Winqvist, R.
Pylkäs, K.
Jukkola-Vuorinen, A.
Grip, M.
Hooning, M.
Hollestelle, A.
Oldenburg, R.A.
Tilanus-Linthorst, M.
Khusnutdinova, E.
Bermisheva, M.
Prokofieva, D.
Farahtdinova, A.
Olson, J.E.
Wang, X.
Humphreys, M.K.
Wang, Q.
Chenevix-Trench, G.
kConFab Investigators,
AOCS Group,
Easton, D.F.
(2011). Confirmation of 5p12 as a susceptibility locus for progesterone-receptor-positive, lower grade breast cancer. Cancer epidemiol biomarkers prev,
Vol.20
(10),
pp. 2222-2231.
show abstract
BACKGROUND: The single-nucleotide polymorphism (SNP) 5p12-rs10941679 has been found to be associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We aimed to further explore this association overall, and by tumor histopathology, in the Breast Cancer Association Consortium. METHODS: Data were combined from 37 studies, including 40,972 invasive cases, 1,398 cases of ductal carcinoma in situ (DCIS), and 46,334 controls, all of white European ancestry, as well as 3,007 invasive cases and 2,337 controls of Asian ancestry. Associations overall and by tumor invasiveness and histopathology were assessed using logistic regression. RESULTS: For white Europeans, the per-allele OR associated with 5p12-rs10941679 was 1.11 (95% CI = 1.08-1.14, P = 7 × 10(-18)) for invasive breast cancer and 1.10 (95% CI = 1.01-1.21, P = 0.03) for DCIS. For Asian women, the estimated OR for invasive disease was similar (OR = 1.07, 95%CI = 0.99-1.15, P = 0.09). Further analyses suggested that the association in white Europeans was largely limited to progesterone receptor (PR)-positive disease (per-allele OR = 1.16, 95% CI = 1.12-1.20, P = 1 × 10(-18) vs. OR = 1.03, 95% CI = 0.99-1.07, P = 0.2 for PR-negative disease; P(heterogeneity) = 2 × 10(-7)); heterogeneity by ER status was not observed (P = 0.2) once PR status was accounted for. The association was also stronger for lower grade tumors [per-allele OR (95% CI) = 1.20 (1.14-1.25), 1.13 (1.09-1.16), and 1.04 (0.99-1.08) for grade 1, 2, and 3/4, respectively; P(trend) = 5 × 10(-7)]. CONCLUSION: 5p12 is a breast cancer susceptibility locus for PR-positive, lower grade breast cancer. IMPACT: Multicenter fine-mapping studies of this region are needed as a first step to identifying the causal variant or variants..
Milne, R.L.
Lorenzo-Bermejo, J.
Burwinkel, B.
Malats, N.
Ignacio Arias, J.
Pilar Zamora, M.
Benitez, J.
Humphreys, M.K.
Garcia-Closas, M.
Chanock, S.J.
Lissowska, J.
Sherman, M.E.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Nevanlinna, H.
Heikkinen, T.
Aittomaki, K.
Blomqvist, C.
Anton-Culver, H.
Ziogas, A.
Devilee, P.
van Asperen, C.J.
Tollenaar, R.A.
Seynaeve, C.
Hall, P.
Czene, K.
Liu, J.
Irwanto, A.K.
Kang, D.
Yoo, K.-.
Noh, D.-.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Nordestgaard, B.G.
Bojesen, S.E.
Flyger, H.
Margolin, S.
Lindblom, A.
Fasching, P.A.
Schulz-Wendtland, R.
Ekici, A.B.
Beckmann, M.W.
Wang-Gohrke, S.
Shen, C.-.
Yu, J.-.
Hsu, H.-.
Wu, P.-.
Giles, G.G.
Severi, G.
Baglietto, L.
English, D.R.
Cox, A.
Brock, I.
Elliott, G.
Reed, M.W.
Beesley, J.
Chen, X.
Fletcher, O.
Gibson, L.
Silva, I.D.
Peto, J.
Frank, B.
Heil, J.
Meindl, A.
Chang-Claude, J.
Hein, R.
Vrieling, A.
Flesch-Janys, D.
Southey, M.C.
Smith, L.
Apicella, C.
Hopper, J.L.
Dunning, A.M.
Pooley, K.A.
Pharoah, P.D.
Hamann, U.
Pesch, B.
Ko, Y.-.
Easton, D.F.
Chenevix-Trench, G.
(2011). 7q21-rs6964587 and breast cancer risk: an extended case-control study by the Breast Cancer Association Consortium. Journal of medical genetics,
Vol.48
(10),
pp. 698-5.
full text
Fletcher, O.
Houlston, R.S.
(2010). Architecture of inherited susceptibility to common cancer. Nat rev cancer,
Vol.10
(5),
pp. 353-361.
show abstract
This Timeline article looks back at 40 years of research into the inherited genetic basis of cancer and the insights these studies have yielded. Early epidemiological research provided evidence for the 'two-hit' model of cancer predisposition. During the 1980s and 1990s linkage and positional cloning analyses led to the identification of high-penetrance cancer susceptibility genes. The past decade has seen a shift from models of predisposition based on single-gene causative mutations to multigenic models. These models suggest that a high proportion of cancers may arise in a genetically susceptible minority as a consequence of the combined effects of common low-penetrance alleles and rare disease-causing variants that confer moderate cancer risks..
Fletcher, O.
Johnson, N.
Silva, I.D.
Orr, N.
Ashworth, A.
Nevanlinna, H.
Heikkinen, T.
Aittomaki, K.
Blomqvist, C.
Burwinkel, B.
Bartram, C.R.
Meindl, A.
Schmutzler, R.K.
Cox, A.
Brock, I.
Elliott, G.
Reed, M.W.
Southey, M.C.
Smith, L.
Spurdle, A.B.
Hopper, J.L.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Schuermann, P.
Waltes, R.
Bremer, M.
Doerk, T.
Devilee, P.
van Asperen, C.J.
Tollenaar, R.A.
Seynaeve, C.
Hall, P.
Czene, K.
Humphreys, K.
Liu, J.
Ahmed, S.
Dunning, A.M.
Maranian, M.
Pharoah, P.D.
Chenevix-Trench, G.
Beesley, J.
Bogdanova, N.V.
Antonenkova, N.N.
Zalutsky, I.V.
Anton-Culver, H.
Ziogas, A.
Brauch, H.
Ko, Y.-.
Hamann, U.
Fasching, P.A.
Strick, R.
Ekici, A.B.
Beckmann, M.W.
Giles, G.G.
Severi, G.
Baglietto, L.
English, D.R.
Milne, R.L.
Benitez, J.
Ignacio Arias, J.
Pita, G.
Nordestgaard, B.G.
Bojesen, S.E.
Flyger, H.
Kang, D.
Yoo, K.-.
Noh, D.Y.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Garcia-Closas, M.
Chanock, S.
Lissowska, J.
Brinton, L.A.
Chang-Claude, J.
Wang-Gohrke, S.
Broeks, A.
Schmidt, M.K.
van Leeuwen, F.E.
Van't Veer, L.J.
Margolin, S.
Lindblom, A.
Humphreys, M.K.
Morrison, J.
Platte, R.
Easton, D.F.
Peto, J.
(2010). Missense Variants in ATM in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer epidemiology biomarkers & prevention,
Vol.19
(9),
pp. 2143-9.
Walker, K.
Johnson, N.
Palles, C.
Folkerd, E.
Hillier, S.G.
Moss, S.
Gibson, L.
Dowsett, M.
Peto, J.
Silva, I.D.
Fletcher, O.
(2010). Polymorphisms, Endogenous Hormone Levels and Breast Cancer Risk in Premenopausal Women. Cancer research,
Vol.70.
Milne, R.L.
Gaudet, M.M.
Spurdle, A.B.
Fasching, P.A.
Couch, F.J.
Benítez, J.
Arias Pérez, J.I.
Zamora, M.P.
Malats, N.
Dos Santos Silva, I.
Gibson, L.J.
Fletcher, O.
Johnson, N.
Anton-Culver, H.
Ziogas, A.
Figueroa, J.
Brinton, L.
Sherman, M.E.
Lissowska, J.
Hopper, J.L.
Dite, G.S.
Apicella, C.
Southey, M.C.
Sigurdson, A.J.
Linet, M.S.
Schonfeld, S.J.
Freedman, D.M.
Mannermaa, A.
Kosma, V.-.
Kataja, V.
Auvinen, P.
Andrulis, I.L.
Glendon, G.
Knight, J.A.
Weerasooriya, N.
Cox, A.
Reed, M.W.
Cross, S.S.
Dunning, A.M.
Ahmed, S.
Shah, M.
Brauch, H.
Ko, Y.-.
Brüning, T.
GENICA Network,
Lambrechts, D.
Reumers, J.
Smeets, A.
Wang-Gohrke, S.
Hall, P.
Czene, K.
Liu, J.
Irwanto, A.K.
Chenevix-Trench, G.
Holland, H.
kConFab,
AOCS,
Giles, G.G.
Baglietto, L.
Severi, G.
Bojensen, S.E.
Nordestgaard, B.G.
Flyger, H.
John, E.M.
West, D.W.
Whittemore, A.S.
Vachon, C.
Olson, J.E.
Fredericksen, Z.
Kosel, M.
Hein, R.
Vrieling, A.
Flesch-Janys, D.
Heinz, J.
Beckmann, M.W.
Heusinger, K.
Ekici, A.B.
Haeberle, L.
Humphreys, M.K.
Morrison, J.
Easton, D.F.
Pharoah, P.D.
García-Closas, M.
Goode, E.L.
Chang-Claude, J.
(2010). Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast cancer res,
Vol.12
(6),
p. R110.
show abstract
INTRODUCTION: Several common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium. METHODS: We evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects. RESULTS: These analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar. CONCLUSIONS: The relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified..
Fletcher, O.
Johnson, N.
Silva, I.D.
Kilpivaara, O.
Aittomaki, K.
Blomqvist, C.
Nevanlinna, H.
Wasielewski, M.
Meijers-Heijerboer, H.
Broeks, A.
Schmidt, M.K.
Van't Veer, L.J.
Bremer, M.
Doerk, T.
Chekmariova, E.V.
Sokolenko, A.P.
Imyanitov, E.N.
Hamann, U.
Rashid, M.U.
Brauch, H.
Justenhoven, C.
Ashworth, A.
Peto, J.
(2009). Family History, Genetic Testing, and Clinical Risk Prediction: Pooled Analysis of CHEK2*1100delC in 1,828 Bilateral Breast Cancers and 7,030 Controls. Cancer epidemiology biomarkers & prevention,
Vol.18
(1),
pp. 230-5.
Flanagan, J.M.
Munoz-Alegre, M.
Henderson, S.
Tang, T.
Sun, P.
Johnson, N.
Fletcher, O.
Silva, I.D.
Peto, J.
Boshoff, C.
Narod, S.
Petronis, A.
(2009). Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Human molecular genetics,
Vol.18
(7),
pp. 1332-11.
Ahmed, S.
Thomas, G.
Ghoussaini, M.
Healey, C.S.
Humphreys, M.K.
Platte, R.
Morrison, J.
Maranian, M.
Pooley, K.A.
Luben, R.
Eccles, D.
Evans, D.G.
Fletcher, O.
Johnson, N.
Silva, I.D.
Peto, J.
Stratton, M.R.
Rahman, N.
Jacobs, K.
Prentice, R.
Anderson, G.L.
Rajkovic, A.
Curb, J.D.
Ziegler, R.G.
Berg, C.D.
Buys, S.S.
McCarty, C.A.
Feigelson, H.S.
Calle, E.E.
Thun, M.J.
Diver, W.R.
Bojesen, S.
Nordestgaard, B.G.
Flyger, H.
Doerk, T.
Schuermann, P.
Hillemanns, P.
Karstens, J.H.
Bogdanova, N.V.
Antonenkova, N.N.
Zalutsky, I.V.
Bermisheva, M.
Fedorova, S.
Khusnutdinova, E.
Kang, D.
Yoo, K.-.
Noh, D.Y.
Ahn, S.-.
Devilee, P.
van Asperen, C.J.
Tollenaar, R.A.
Seynaeve, C.
Garcia-Closas, M.
Lissowska, J.
Brinton, L.
Peplonska, B.
Nevanlinna, H.
Heikkinen, T.
Aittomaki, K.
Blomqvist, C.
Hopper, J.L.
Southey, M.C.
Smith, L.
Spurdle, A.B.
Schmidt, M.K.
Broeks, A.
van Hien, R.R.
Cornelissen, S.
Milne, R.L.
Ribas, G.
Gonzalez-Neira, A.
Benitez, J.
Schmutzler, R.K.
Burwinkel, B.
Bartram, C.R.
Meindl, A.
Brauch, H.
Justenhoven, C.
Hamann, U.
Chang-Claude, J.
Hein, R.
Wang-Gohrke, S.
Lindblom, A.
Margolin, S.
Mannermaa, A.
Kosma, V.-.
Kataja, V.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Giles, G.G.
Severi, G.
Baglietto, L.
English, D.R.
Hankinson, S.E.
Cox, D.G.
Kraft, P.
Vatten, L.J.
Hveem, K.
Kumle, M.
Sigurdson, A.
Doody, M.
Bhatti, P.
Alexander, B.H.
Hooning, M.J.
van den Ouweland, A.M.
Oldenburg, R.A.
Schutte, M.
Hall, P.
Czene, K.
Liu, J.
Li, Y.
Cox, A.
Elliott, G.
Brock, I.
Reed, M.W.
Shen, C.-.
Yu, J.-.
Hsu, G.-.
Chen, S.-.
Anton-Culver, H.
Ziogas, A.
Andrulis, I.L.
Knight, J.A.
Beesley, J.
Goode, E.L.
Couch, F.
Chenevix-Trench, G.
Hoover, R.N.
Ponder, B.A.
Hunter, D.J.
Pharoah, P.D.
Dunning, A.M.
Chanock, S.J.
Easton, D.F.
(2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23 2. Nature genetics,
Vol.41
(5),
pp. 585-6.
full text
Gaudet, M.M.
Milne, R.L.
Cox, A.
Camp, N.J.
Goode, E.L.
Humphreys, M.K.
Dunning, A.M.
Morrison, J.
Giles, G.G.
Severi, G.
Baglietto, L.
English, D.R.
Couch, F.J.
Olson, J.E.
Wang, X.
Chang-Claude, J.
Flesch-Janys, D.
Abbas, S.
Salazar, R.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Lindblom, A.
Margolin, S.
Heikkinen, T.
Kämpjärvi, K.
Aaltonen, K.
Nevanlinna, H.
Bogdanova, N.
Coinac, I.
Schürmann, P.
Dörk, T.
Bartram, C.R.
Schmutzler, R.K.
Tchatchou, S.
Burwinkel, B.
Brauch, H.
Torres, D.
Hamann, U.
Justenhoven, C.
Ribas, G.
Arias, J.I.
Benitez, J.
Bojesen, S.E.
Nordestgaard, B.G.
Flyger, H.L.
Peto, J.
Fletcher, O.
Johnson, N.
Dos Santos Silva, I.
Fasching, P.A.
Beckmann, M.W.
Strick, R.
Ekici, A.B.
Broeks, A.
Schmidt, M.K.
van Leeuwen, F.E.
Van't Veer, L.J.
Southey, M.C.
Hopper, J.L.
Apicella, C.
Haiman, C.A.
Henderson, B.E.
Le Marchand, L.
Kolonel, L.N.
Kristensen, V.
Grenaker Alnaes, G.
Hunter, D.J.
Kraft, P.
Cox, D.G.
Hankinson, S.E.
Seynaeve, C.
Vreeswijk, M.P.
Tollenaar, R.A.
Devilee, P.
Chanock, S.
Lissowska, J.
Brinton, L.
Peplonska, B.
Czene, K.
Hall, P.
Li, Y.
Liu, J.
Balasubramanian, S.
Rafii, S.
Reed, M.W.
Pooley, K.A.
Conroy, D.
Baynes, C.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Shen, C.-.
Wang, H.-.
Yu, J.-.
Wu, P.-.
Anton-Culver, H.
Ziogoas, A.
Egan, K.
Newcomb, P.
Titus-Ernstoff, L.
Trentham Dietz, A.
Sigurdson, A.J.
Alexander, B.H.
Bhatti, P.
Allen-Brady, K.
Cannon-Albright, L.A.
Wong, J.
Australian Ovarian Cancer Study Group,
Chenevix-Trench, G.
Spurdle, A.B.
Beesley, J.
Pharoah, P.D.
Easton, D.F.
Garcia-Closas, M.
Breast Cancer Association Consortium,
(2009). Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium. Cancer epidemiol biomarkers prev,
Vol.18
(5),
pp. 1610-1616.
show abstract
Previous studies have suggested that minor alleles for ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 may influence breast cancer risk, but the evidence is inconclusive due to their small sample size. These polymorphisms were genotyped in more than 30,000 breast cancer cases and 30,000 controls, primarily of European descent, from 30 studies in the Breast Cancer Association Consortium. We calculated odds ratios (OR) and 95% confidence intervals (95% CI) as a measure of association. We found that the minor alleles for these polymorphisms were not related to invasive breast cancer risk overall in women of European descent: ECCR4 per-allele OR (95% CI) = 0.99 (0.97-1.02), minor allele frequency = 27.5%; TNF 1.00 (0.95-1.06), 5.0%; CASP10 1.02 (0.98-1.07), 6.5%; PGR 1.02 (0.99-1.06), 15.3%; and BID 0.98 (0.86-1.12), 1.7%. However, we observed significant between-study heterogeneity for associations with risk for single-nucleotide polymorphisms (SNP) in CASP10, PGR, and BID. Estimates were imprecise for women of Asian and African descent due to small numbers and lower minor allele frequencies (with the exception of BID SNP). The ORs for each copy of the minor allele were not significantly different by estrogen or progesterone receptor status, nor were any significant interactions found between the polymorphisms and age or family history of breast cancer. In conclusion, our data provide persuasive evidence against an overall association between invasive breast cancer risk and ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 genotypes among women of European descent..
Gibson, L.
Johnson, N.
Fraser, A.
Silva, I.D.
Houlston, R.
Peto, J.
Fletcher, O.
(2009). No Breast Cancer Association for Transforming Growth Factor-beta Pathway Colorectal Cancer Single Nucleotide Polymorphisms. Cancer epidem biomar,
Vol.18
(6),
pp. 1934-1936.
show abstract
SMAD7 and GREM1 are signaling components on the transforming growth factor-beta pathway, which regulates normal mammary gland development and has been implicated in breast tumor invasion and metastasis. Three variants within SMAD7 and two variants in CRAC1 (a colorectal cancer-associated region on chromosome 15 in which GREM1 is located) have been associated with colorectal cancer risks [odds ratios (OR), 0.85-1.26; all P < 10(-7)]. We genotyped these five variants in a series of 1,267 bilateral breast cancer cases and 900 controls to determine whether they are associated with breast as well as colorectal cancer risk. None of these single nucleotide polymorphisms were associated with breast cancer risk in our study and the 95% confidence limits of our data, pooled with data from the Cancer Genetic Markers of Susceptibility study, exclude per allele ORs of <0.94 or >1.08. One or more of these variants may be associated with a very small OR for breast cancer, but our data suggest that the effects of these alleles are cancer site-specific. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1934-6).
Walker, K.
Fletcher, O.
Johnson, N.
Coupland, B.
McCormack, V.A.
Folkerd, E.
Gibson, L.
Hillier, S.G.
Holly, J.M.
Moss, S.
Dowsett, M.
Peto, J.
dos Santos Silva, I.
(2009). Premenopausal mammographic density in relation to cyclic variations in endogenous sex hormone levels, prolactin, and insulin-like growth factors. Cancer res,
Vol.69
(16),
pp. 6490-6499.
show abstract
Mammographic density is strongly associated with breast cancer risk, and endogenous hormones, which are risk factors for breast cancer, may be involved in the mechanism. This cross-sectional study of 494 premenopausal women is the first to account for cyclic variations in estrogen levels, by measuring urinary estrone glucuronide (E1G) in the periovulatory and luteal phases of the menstrual cycle, and to assess the role of androgens. Computer-assisted density readings were obtained from digitized mammograms. Mean ovulatory E1G level and daily E1G load were both positively associated with percent density before adjustment for body mass index (BMI), with women in the top fourth having 10.2% (95% CI: 2.9%, 18.1%) and 8.9% (1.7%, 16.7%), respectively, higher density than those in the bottom fourth (Ptrend before/after BMI adjustment=0.006/0.11 and 0.01/0.13, respectively). Neither the peak nor luteal E1G levels were predictive of density after adjustment for E1G levels at other points in the cycle. The plasma androgens testosterone, androstenedione, and dehydroepiandrosterone sulfate were negatively associated with density. In mutually adjusted analyses, density was positively associated with insulin-like growth factor (IGF)-I and negatively with IGF-II (Ptrend=0.006 for both) but not with IGF binding protein-3. There was also weak evidence of a positive association of prolactin with density. The study supports the hypothesis that endogenous hormones affect density in premenopausal women; in particular, it shows a positive association between estrogen levels and density and suggests that the mean level throughout the cycle is the most biologically relevant measure. Most of these hormone-density associations were attenuated with further adjustment for BMI..
Milne, R.L.
Benitez, J.
Nevanlinna, H.
Heikkinen, T.
Aittomaki, K.
Blomqvist, C.
Ignacio Arias, J.
Pilar Zamora, M.
Burwinkel, B.
Bartram, C.R.
Meindl, A.
Schmutzler, R.K.
Cox, A.
Brock, I.
Elliott, G.
Reed, M.W.
Southey, M.C.
Smith, L.
Spurdle, A.B.
Hopper, J.L.
Couch, F.J.
Olson, J.E.
Wang, X.
Fredericksen, Z.
Schuermann, P.
Bremer, M.
Hillemanns, P.
Doerk, T.
Devilee, P.
Van Asperen, C.J.
Tollenaar, R.A.
Seynaeve, C.
Hall, P.
Czene, K.
Liu, J.
Li, Y.
Ahmed, S.
Dunning, A.M.
Maranian, M.
Pharoah, P.D.
Chenevix-Trench, G.
Beesley, J.
Bogdanova, N.V.
Antonenkova, N.N.
Zalutsky, I.V.
Anton-Culver, H.
Ziogas, A.
Brauch, H.
Justenhoven, C.
Ko, Y.-.
Haas, S.
Fasching, P.A.
Strick, R.
Ekici, A.B.
Beckmann, M.W.
Giles, G.G.
Severi, G.
Baglietto, L.
English, D.R.
Fletcher, O.
Johnson, N.
Silva, I.D.
Peto, J.
Turnbull, C.
Hines, S.
Renwick, A.
Rahman, N.
Nordestgaard, B.G.
Bojesen, S.E.
Flyger, H.
Kang, D.
Yoo, K.-.
Noh, D.-.
Mannermaa, A.
Kataja, V.
Kosma, V.-.
Garcia-Closas, M.
Chanock, S.
Lissowska, J.
Brinton, L.A.
Chang-Claude, J.
Wang-Gohrke, S.
Shen, C.-.
Wang, H.-.
Yu, J.-.
Chen, S.-.
Bermisheva, M.
Nikolaeva, T.
Khusnutdinova, E.
Humphreys, M.K.
Morrison, J.
Platte, R.
Easton, D.F.
(2009). Risk of Estrogen Receptor-Positive and -Negative Breast Cancer and Single-Nucleotide Polymorphism 2q35-rs13387042. Jnci-journal of the national cancer institute,
Vol.101
(14),
pp. 1012-7.
Fletcher, O.
Johnson, N.
Gibson, L.
Coupland, B.
Fraser, A.
Leonard, A.
Silva, I.D.
Ashworth, A.
Houlston, R.
Peto, J.
(2008). Association of genetic variants at 8q24 with breast cancer risk. Cancer epidemiology biomarkers & prevention,
Vol.17
(3),
pp. 702-4.
Reis-Filho, J.S.
Drury, S.
Lambros, M.B.
Marchio, C.
Johnson, N.
Natrajan, R.
Salter, J.
Levey, P.
Fletcher, O.
Peto, J.
Ashworth, A.
Dowsett, M.
(2008). ESR1 gene amplification in breast cancer: a common phenomenon?. Nat genet,
Vol.40
(7),
pp. 809-810.
Palles, C.
Johnson, N.
Coupland, B.
Taylor, C.
Carvajal, J.
Holly, J.
Fentiman, I.S.
Silva, I.D.
Ashworth, A.
Peto, J.
Fletcher, O.
(2008). Identification of genetic variants that influence circulating IGF1 levels: a targeted search strategy. Hum mol genet,
Vol.17
(10),
pp. 1457-1464.
show abstract
An important class of genetic variants that affect disease susceptibility may lie within regulatory elements that influence gene expression. Regulatory sequences are difficult to identify and may be distant from the genes they regulate, but many lie within evolutionarily conserved regions (ECRs). We used comparative genomics to identify 12 ECRs up to 75 kb 5' to and within introns of IGF1. These were screened by high-resolution melting curve analysis, and 18 single-nucleotide polymorphisms (SNPs) were identified, including five novel variants. We analysed two large population-based series of healthy women to test the nine SNPs with minor allele frequency (MAF) >1% within ECRs. Three of the nine SNPs within ECRs (rs35455143, rs35765817 and rs3839984) were significantly associated with circulating IGF1 levels in a multivariate analysis (P 70 kb 5' of IGF1. Two (rs35455143 and rs35765817) are in strong LD with each other and appear to have opposite effects on circulating IGF1. Our results on a subset of other SNPs in or near IGF1 were consistent with previously reported associations with IGF1 levels, although only one (rs35767: P = 0.05) was statistically significant. We believe that this is the first systematic study of an association between a phenotype and SNPs within ECRs extending over a large region adjacent to a gene. Targeting ECRs appears to be a useful strategy for identifying a subset of potentially functional non-coding regulatory SNPs..
Frank, B.
Wiestler, M.
Kropp, S.
Hemminki, K.
Spurdle, A.B.
Sutter, C.
Wappenschmidt, B.
Chen, X.
Beesley, J.
Hopper, J.L.
Meindl, A.
Kiechle, M.
Slanger, T.
Bugert, P.
Schmutzler, R.K.
Bartram, C.R.
Flesch-Janys, D.
Mutschelknauss, E.
Ashton, K.
Salazar, R.
Webb, E.
Hamann, U.
Brauch, H.
Justenhoven, C.
Ko, Y.-.
Bruening, T.
Silva, I.D.
Johnson, N.
Pharoah, P.P.
Dunning, A.M.
Pooley, K.A.
Chang-Claude, J.
Easton, D.F.
Peto, J.
Houlston, R.
Chenevix-Trench, G.
Fletcher, O.
Burwinkel, B.
(2008). Association of a common AKAP9 variant with breast cancer risk:: A collaborative analysis. Journal of the national cancer institute,
Vol.100
(6),
pp. 437-6.
Johnson, N.
Fletcher, O.
Palles, C.
Rudd, M.
Webb, E.
Sellick, G.
dos Santos Silva, I.
McCormack, V.
Gibson, L.
Fraser, A.
Leonard, A.
Gilham, C.
Tavtigian, S.V.
Ashworth, A.
Houlston, R.
Peto, J.
(2007). Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility. Hum mol genet,
Vol.16
(9),
pp. 1051-1057.
show abstract
Rare inactivating mutations in BRCA1, BRCA2, ATM, TP53 and CHEK2 confer relative risks for breast cancer between about 2 and more than 10, but more common variants in these genes are generally considered of little or no clinical significance. Under the polygenic model for breast cancer carriers of multiple low-penetrance alleles are at high risk, but few such alleles have been reliably identified. We analysed 1037 potentially functional single nucleotide polymorphisms (SNPs) in candidate cancer genes in 473 women with two primary breast cancers and 2463 controls. Twenty-five of these SNPs were in BRCA1, BRCA2, ATM, TP53 and CHEK2. Among the 1037 SNPs there were a few significant findings, but hardly more than would be expected in this large experiment. There was, however, a significant trend in risk with increasing numbers of variant alleles for the 25 SNPs in BRCA1, BRCA2, ATM, TP53 and CHEK2 (P(trend) = 0.005). For the 21 of these with minor allele frequency <10% this trend was highly significant (P(trend) = 0.00004, odds ratio for 3 or more SNPs = 2.90, 95% CI 1.69-4.97). The individual effects of most of these risk alleles were undetectably small even in this well powered study, but the risk conferred by multiple variants is readily detectable and makes a substantial contribution to susceptibility. A risk score incorporating a suitably weighted sum of all potentially functional variants in these and a few other candidate genes may provide clinically useful identification of women at high genetic risk..
Schmidt, M.K.
Reincke, S.
Broeks, A.
Braaf, L.M.
Hogervorst, F.B.
Tollenaar, R.A.
Johnson, N.
Fletcher, O.
Peto, J.
Tommiska, J.
Blomqvist, C.
Nevanlinna, H.A.
Healey, C.S.
Dunning, A.M.
Pharoah, P.D.
Easton, D.F.
Doork, T.
Van't Veer, L.J.
Breast Cancer Assoc Consortium,
(2007). Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium. Cancer res,
Vol.67
(19),
pp. 9584-9590.
show abstract
Association studies in large series of breast cancer patients can be used to identify single-nucleotide polymorphisms (SNP) contributing to breast cancer susceptibility. Previous studies have suggested associations between variants in TP53 (R72P) and MDM2 (SNP309) and cancer risk. Data from molecular studies suggest a functional interaction between these genes. We therefore investigated the effect of TP53 R72P and MDM2 SNP309 on breast cancer risk and age at onset of breast cancer in a pooled series of 5,191 cases and 3,834 controls from the Breast Cancer Association Consortium (BCAC). Breast cancer risk was not found to be associated with the combined variant alleles [odds ratio (OR), 1.00; 95% confidence interval (95% CI), 0.81-1.23]. Estimated ORs were 1.01 (95% Cl, 0.93-1.09) per MDM2 SNP309 allele and 0.9S (95% Cl, 0.91-1.04) for TP53 R72P. Although we did find evidence for a 4-year earlier age at onset for carriers of both variant alleles in one of the breast cancer patient series of the BCAC (the German series), we were not able to confirm this effect in the pooled analysis. Even so, carriers of both variant alleles did not have different risk estimates for bilateral or estrogen receptor-positive breast cancer. In conclusion, in this large collaborative study, we did not find an association of MDM2 SNP309 and TP53 R72P, separately or in interaction, with breast cancer. This suggests that any effect of these two variants would be very small and possibly confined to subgroups that were not assessed in our present study..
Cox, A.
Dunning, A.M.
Garcia-Closas, M.
Balasubramanian, S.
Reed, M.W.
Pooley, K.A.
Scollen, S.
Baynes, C.
Ponder, B.A.
Chanock, S.
Lissowska, J.
Brinton, L.
Peplonska, B.
Southey, M.C.
Hopper, J.L.
McCredie, M.R.
Giles, G.G.
Fletcher, O.
Johnson, N.
dos Santos Silva, I.
Gibson, L.
Bojesen, S.E.
Nordestgaard, B.G.
Axelsson, C.K.
Torres, D.
Hamann, U.
Justenhoven, C.
Brauch, H.
Chang-Claude, J.
Kropp, S.
Risch, A.
Wang-Gohrke, S.
Schuermann, P.
Bogdanova, N.
Doerk, T.
Fagerholm, R.
Aaltonen, K.
Blomqvist, C.
Nevanlinna, H.
Seal, S.
Renwick, A.
Stratton, M.R.
Rahman, N.
Sangrajrang, S.
Hughes, D.
Odefrey, F.
Brennan, P.
Spurdle, A.B.
Chenevix-Trench, G.
Beesley, J.
Mannermaa, A.
Hartikainen, J.
Kataja, V.
Kosma, V.-.
Couch, F.J.
Olson, J.E.
Goode, E.L.
Broeks, A.
Schmidt, M.K.
Hogervorst, F.B.
Van't Veer, L.J.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Wedren, S.
Hall, P.
Low, Y.-.
Liu, J.
Milne, R.L.
Ribas, G.
Gonzalez-Neira, A.
Benitez, J.
Sigurdson, A.J.
Stredrick, D.L.
Alexander, B.H.
Struewing, J.P.
Pharoah, P.D.
Easton, D.F.
(2007). A common coding variant in CASP8 is associated with breast cancer risk. Nature genetics,
Vol.39
(3),
pp. 352-7.
Easton, D.F.
Pooley, K.A.
Dunning, A.M.
Pharoah, P.D.
Thompson, D.
Ballinger, D.G.
Struewing, J.P.
Morrison, J.
Field, H.
Luben, R.
Wareham, N.
Ahmed, S.
Healey, C.S.
Bowman, R.
Meyer, K.B.
Haiman, C.A.
Kolonel, L.K.
Henderson, B.E.
Le Marchand, L.
Brennan, P.
Sangrajrang, S.
Gaborieau, V.
Odefrey, F.
Shen, C.-.
Wu, P.-.
Wang, H.-.
Eccles, D.
Evans, D.G.
Peto, J.
Fletcher, O.
Johnson, N.
Seal, S.
Stratton, M.R.
Rahman, N.
Chenevix-Trench, G.
Bojesen, S.E.
Nordestgaard, B.G.
Axelsson, C.K.
Garcia-Closas, M.
Brinton, L.
Chanock, S.
Lissowska, J.
Peplonska, B.
Nevanlinna, H.
Fagerholm, R.
Eerola, H.
Kang, D.
Yoo, K.-.
Noh, D.-.
Ahn, S.-.
Hunter, D.J.
Hankinson, S.E.
Cox, D.G.
Hall, P.
Wedren, S.
Liu, J.
Low, Y.-.
Bogdanova, N.
Schuermann, P.
Doerk, T.
Tollenaar, R.A.
Jacobi, C.E.
Devilee, P.
Klijn, J.G.
Sigurdson, A.J.
Doody, M.M.
Alexander, B.H.
Zhang, J.
Cox, A.
Brock, I.W.
MacPherson, G.
Reed, M.W.
Couch, F.J.
Goode, E.L.
Olson, J.E.
Meijers-Heijboer, H.
van den Ouweland, A.
Uitterlinden, A.
Rivadeneira, F.
Milne, R.L.
Ribas, G.
Gonzalez-Neira, A.
Benitez, J.
Hopper, J.L.
McCredie, M.
Southey, M.
Giles, G.G.
Schroen, C.
Justenhoven, C.
Brauch, H.
Hamann, U.
Ko, Y.-.
Spurdle, A.B.
Beesley, J.
Chen, X.
Mannermaa, A.
Kosma, V.-.
Kataja, V.
Hartikainen, J.
Day, N.E.
Cox, D.R.
Ponder, B.A.
(2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature,
Vol.447
(7148),
pp. 1087-9.
Webb, E.L.
Rudd, M.F.
Sellick, G.S.
El Galta, R.
Bethke, L.
Wood, W.
Fletcher, O.
Penegar, S.
Withey, L.
Qureshi, M.
Johnson, N.
Tomlinson, I.
Gray, R.
Peto, J.
Houlston, R.S.
(2006). Search for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives. Hum mol genet,
Vol.15
(21),
pp. 3263-3271.
show abstract
To identify low penetrance susceptibility alleles for colorectal cancer (CRC), we genotyped 1467 non-synonymous SNPs mapping to 871 candidate cancer genes in 2575 cases and 2707 controls. nsSNP selection was biased towards those predicted to be functionally deleterious. One SNP AKAP9 M463I remained significantly associated with CRC risk after stringent adjustment for multiple testing. Further SNPs associated with CRC risk included several previously reported to be associated with cancer risk including ATM F858L [OR=1.48; 95% confidence interval (CI): 1.06-2.07] and P1054R (OR=1.42; 95% CI: 1.14-1.77) and MTHFR A222V (OR=0.82; 95% CI: 0.69-0.97). To validate associations, we performed a kin-cohort analysis on the 14 704 first-degree relatives of cases for each SNP associated at the 5% level in the case-control analysis employing the marginal maximum likelihood method to infer genotypes of relatives. Our observations support the hypothesis that inherited predisposition to CRC is in part mediated through polymorphic variation and identify a number of SNPs defining inter-individual susceptibility. We have made data from this analysis publicly available at http://www.icr.ac.uk/research/research_sections/cancer_genetics/cancer_genetics_teams/molecular_and_population_genetics/software_and_databases/index.shtml in order to facilitate the identification of low penetrance CRC susceptibility alleles through pooled analyses..
Silva, I.D.
Johnson, N.
Torres-Mejia, G.
Fletcher, O.
Allen, D.S.
Allen, N.E.
Key, T.J.
Fentiman, I.S.
Holly, J.M.
Peto, J.
(2006). The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer epidem biomar,
Vol.15
(3),
pp. 449-455.
show abstract
High levels of circulating insulin-like growth factor-I (IGF-1), and its major binding protein (IGFBP-3) at premenopausal ges have been associated with an increased breast cancer risk. We conducted a cross-sectional study (215 premenopausal women and 241 after natural menopause) nested within the Guernsey prospective studies to examine the relationship between the IGF system and mammographic features of the breast. The mammographically dense area in he breast increased with increasing serum levels of IGF-I P for linear trend, P-t = 0.05), IGF-II (Pt = 0.08), and IGFBP-3 P-t = 0.01) only in premenopausal women. lGF-II and IGFBP-I serum levels were associated with increases in the mammgraphically lucent area in both premenopausal (P-t = 0.01 and 0.04, respectively) and postmenopausal women (Pt < 0.001 for both), but these associations were no longer statistically significant after adjustment for body mass index and waist circumference. Neither the IGF-I/IGFBP-3 nor the IGF-II/IGFBP-3 molar ratio was associated with any of these mammographic features. The number of A alleles at a polymorphic locus in the promoter region of the IGFBP-3 gene was associated with increasing mean IGFBP-3 levels in both premenopausal (P-t = 0.01) and postmenopausal (P-t < 0.001) women but not with mammographically dense area. These results support the hypothesis that the IGF system may affect the amount of mammographically dense tissue in premenopausal women, possibly by promoting cell proliferation and inhibiting apoptosis in the fibroglandular tissue. The findings also show strong relations between IGF-II and IGFBP-3 levels and the amount of mammographically lucent tissue, reflecting the associations between body adiposity and amount of fat tissue in the breast and between body adiposity and circulating levels of these growth factors..
Fletcher, O.
Johnson, N.
Palles, C.
dos Santos Silva, I.
McCormack, V.
Whittaker, J.
Ashworth, A.
Peto, J.
(2006). Inconsistent association between the STK15 F31I genetic polymorphism and breast cancer risk. J natl cancer inst,
Vol.98
(14),
pp. 1014-1018.
show abstract
STK15 may be a low-penetrance breast cancer susceptibility gene, and several reports suggest that women who are homozygous for the polymorphic variant F31I have an increased risk of breast cancer. To evaluate this potential breast cancer allele, we genotyped 507 patients with two primary breast cancers and 875 population-based control subjects for the STK15 F31I polymorphism. All statistical tests were two-sided. The Ile/Ile homozygous genotype was not associated with an increased risk in white women of British descent. The odds ratio for developing two primary breast cancers) in Ile/Ile homozygotes was 0.63 (95% confidence interval [CI] = 0.34 to 1.13), which corresponds to an odds ratio of 0.79 (95% CI = 0.58 to 1.06) for a first primary breast cancer. A meta-analysis of this study and other published studies showed statistically significant heterogeneity in the odds ratio estimates (P<.001). This heterogeneity could reflect either population-specific linkage disequilibrium with a functional variant or artifacts such as population stratification or publication bias..
Fletcher, O.
Gibson, L.
Johnson, N.
Altmann, D.R.
Holly, J.M.
Ashworth, A.
Peto, J.
Silva, I.D.
(2005). Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: A systematic review. Cancer epidem biomar,
Vol.14
(1),
pp. 2-19.
show abstract
We reviewed all English-language articles on associations among circulating levels of the insulin-like growth factors (IGF) and their binding proteins (IGFBP), polymorphisms in their genes, and breast cancer risk. In premenopausal women, five of eight IGF-I studies and four of six IGFBP-3 studies of circulating levels found that women in the highest quantile had more than twice the risk of developing breast cancer of those in the lowest, although in some this effect was only apparent at young ages. In postmenopausal women, however, there was no consistent effect. A simple sequence length polymorphism 1 kb 5' to IGF-I was examined in relation to circulating levels of IGF-I (12 studies) or breast cancer risk (4 studies), but there was no convincing evidence of any effect. For an A/C polymorphism 5' to IGFBP-3, all three studies were consistent with a modest effect on circulating levels, but no evidence of a direct effect on breast cancer risk was seen in the only relevant study. Variation within the reference range of IGF-I and IGFBP-3 may confer only modest increases in breast cancer risk, and any single polymorphism may only account for a small proportion of that variation. Nevertheless, population attributable fractions for high circulating levels of IGF-I and IGFBP-3 and for common genetic variants could be substantial. Further large studies, or combined analysis of data from existing studies, are needed to quantify these effects more precisely..
Peto, J.
Fletcher, O.
Gilham, C.
(2004). Data protection, informed consent, and research - Medical research suffers because of pointless obstacles. Brit med j,
Vol.328
(7447),
pp. 1029-1030.
full text
Fletcher, O.
Easton, D.
Anderson, K.
Gilham, C.
Jay, M.
Peto, J.
(2004). Lifetime risks of common cancers among retinoblastoma survivors. Jnci-journal of the national cancer institute,
Vol.96
(5),
pp. 357-7.
Peto, J.
Gilham, C.
Fletcher, O.
Matthews, F.E.
(2004). The cervical cancer epidemic that screening has prevented in the UK. Lancet,
Vol.364
(9430),
pp. 249-8.
Peto, J.
Gilham, C.
Fletcher, O.
(2004). Harms and benefits of screening to prevent cervical cancer - Reply. Lancet,
Vol.364
(9444),
pp. 1485-1486.
Abramsky, L.
Fletcher, O.
(2002). Interpreting information: what is said, what is heard--a questionnaire study of health professionals and members of the public. Prenat diagn,
Vol.22
(13),
pp. 1188-1194.
show abstract
OBJECTIVE: To investigate how people perceive some of the words and phrases commonly used in prenatal diagnosis counselling. METHODS: A questionnaire containing 25 questions with forced choice answers was administered in the form of a lecture. Respondents were asked to report how worrying they would find different ways of being told about hypothetical anomalies or risks of anomalies in their baby. 581 questionnaires were completed by 372 health professionals and 209 members of the public. The sample was obtained opportunistically. The exact number of non-responders is not known but is estimated to be less than 5%. RESULTS: Respondents reported being particularly worried by the use of genetic jargon and use of the following words: rare, abnormal, syndrome, disorder, anomaly and high risk. They found risk expressed as 1 in X more worrying than when it was expressed as a percentage, and they consistently reacted as if they estimated the chance of an undesired outcome occurring to be greater than that of a desired outcome occurring when both events were equally likely. CONCLUSIONS: The choice of words used to describe a condition or to inform someone about the level of risk of an adverse event occurring may significantly affect how the person perceives that condition or risk..
Fletcher, O.
Kessling, A.M.
(1998). MTHFR association with arteriosclerotic vascular disease?. Hum genet,
Vol.103
(1),
pp. 11-21.
show abstract
Complex diseases are far more common than diseases that follow simple Mendelian patterns of inheritance. Difficulties are experienced in the designing of experiments to dissect out the contribution of a single allele to a complex phenotype. We review the literature regarding a point mutation in methylenetetrahydrofolate reductase, a candidate gene for susceptibility to vascular diseases..
Johnson, N.
Fletcher, O.
Naceur-Lombardelli, C.
Silva, I.D.
Ashworth, A.
Peto, J.
Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes:: a familial study. Lancet,
Vol.366
(9496),
pp. 1554-4.