Almagro, J.
Messal, H.A.
Elosegui-Artola, A.
van Rheenen, J.
Behrens, A.
(2022). Tissue architecture in tumor initiation and progression. Trends cancer,
Vol.8
(6),
pp. 494-505.
show abstract
full text
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells..
Lan, L.
Evan, T.
Li, H.
Hussain, A.
Ruiz, E.J.
Zaw Thin, M.
Ferreira, R.M.
Ps, H.
Riising, E.M.
Zen, Y.
Almagro, J.
Ng, K.W.
Soro-Barrio, P.
Nelson, J.
Koifman, G.
Carvalho, J.
Nye, E.L.
He, Y.
Zhang, C.
Sadanandam, A.
Behrens, A.
(2022). GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature,
Vol.607
(7917),
pp. 163-168.
show abstract
Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor..
Nelson, J.K.
Thin, M.Z.
Evan, T.
Howell, S.
Wu, M.
Almeida, B.
Legrave, N.
Koenis, D.S.
Koifman, G.
Sugimoto, Y.
Llorian Sopena, M.
MacRae, J.
Nye, E.
Howell, M.
Snijders, A.P.
Prachalias, A.
Zen, Y.
Sarker, D.
Behrens, A.
(2022). USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat commun,
Vol.13
(1),
p. 2070.
show abstract
full text
Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited..
Messal, H.A.
Almagro, J.
Zaw Thin, M.
Tedeschi, A.
Ciccarelli, A.
Blackie, L.
Anderson, K.I.
Miguel-Aliaga, I.
van Rheenen, J.
Behrens, A.
(2021). Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat protoc,
Vol.16
(1),
pp. 239-262.
show abstract
full text
Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week..
Gribben, C.
Lambert, C.
Messal, H.A.
Hubber, E.-.
Rackham, C.
Evans, I.
Heimberg, H.
Jones, P.
Sancho, R.
Behrens, A.
(2021). Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell stem cell,
Vol.28
(11),
pp. 2000-2008.e4.
show abstract
full text
Ductal cells have been proposed as a source of adult β cell neogenesis, but this has remained controversial. By combining lineage tracing, 3D imaging, and single-cell RNA sequencing (scRNA-seq) approaches, we show that ductal cells contribute to the β cell population over time. Lineage tracing using the Neurogenin3 (Ngn3)-CreERT line identified ductal cells expressing the endocrine master transcription factor Ngn3 that were positive for the δ cell marker somatostatin and occasionally co-expressed insulin. The number of hormone-expressing ductal cells was increased in Akita+/- diabetic mice, and ngn3 heterozygosity accelerated diabetes onset. scRNA-seq of Ngn3 lineage-traced islet cells indicated that duct-derived somatostatin-expressing cells, some of which retained expression of ductal markers, gave rise to β cells. This study identified Ngn3-expressing ductal cells as a source of adult β cell neogenesis in homeostasis and diabetes, suggesting that this mechanism, in addition to β cell proliferation, maintains the adult islet β cell population..
Khan, O.M.
Almagro, J.
Nelson, J.K.
Horswell, S.
Encheva, V.
Keyan, K.S.
Clurman, B.E.
Snijders, A.P.
Behrens, A.
(2021). Proteasomal degradation of the tumour suppressor FBW7 requires branched ubiquitylation by TRIP12. Nat commun,
Vol.12
(1),
p. 2043.
show abstract
full text
The tumour suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), that targets several oncoproteins for proteasomal degradation. FBW7 is widely mutated and FBW7 protein levels are commonly downregulated in cancer. Here, using an shRNA library screen, we identify the HECT-domain E3 ubiquitin ligase TRIP12 as a negative regulator of FBW7 stability. We find that SCFFBW7-mediated ubiquitylation of FBW7 occurs preferentially on K404 and K412, but is not sufficient for its proteasomal degradation, and in addition requires TRIP12-mediated branched K11-linked ubiquitylation. TRIP12 inactivation causes FBW7 protein accumulation and increased proteasomal degradation of the SCFFBW7 substrate Myeloid Leukemia 1 (MCL1), and sensitizes cancer cells to anti-tubulin chemotherapy. Concomitant FBW7 inactivation rescues the effects of TRIP12 deficiency, confirming FBW7 as an essential mediator of TRIP12 function. This work reveals an unexpected complexity of FBW7 ubiquitylation, and highlights branched ubiquitylation as an important signalling mechanism regulating protein stability..
Ruiz, E.J.
Lan, L.
Diefenbacher, M.E.
Riising, E.M.
Da Costa, C.
Chakraborty, A.
Hoeck, J.D.
Spencer-Dene, B.
Kelly, G.
David, J.-.
Nye, E.
Downward, J.
Behrens, A.
(2021). JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. Jci insight,
Vol.6
(13).
show abstract
full text
The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer..
Almagro, J.
Messal, H.A.
Zaw Thin, M.
van Rheenen, J.
Behrens, A.
(2021). Tissue clearing to examine tumour complexity in three dimensions. Nat rev cancer,
Vol.21
(11),
pp. 718-730.
show abstract
The visualization of whole organs and organisms through tissue clearing and fluorescence volumetric imaging has revolutionized the way we look at biological samples. Its application to solid tumours is changing our perception of tumour architecture, revealing signalling networks and cell interactions critical in tumour progression, and provides a powerful new strategy for cancer diagnostics. This Review introduces the latest advances in tissue clearing and three-dimensional imaging, examines the challenges in clearing epithelia - the tissue of origin of most malignancies - and discusses the insights that tissue clearing has brought to cancer research, as well as the prospective applications to experimental and clinical oncology..
Ruiz, E.J.
Pinto-Fernandez, A.
Turnbull, A.P.
Lan, L.
Charlton, T.M.
Scott, H.C.
Damianou, A.
Vere, G.
Riising, E.M.
Da Costa, C.
Krajewski, W.W.
Guerin, D.
Kearns, J.D.
Ioannidis, S.
Katz, M.
McKinnon, C.
O'Connell, J.
Moncaut, N.
Rosewell, I.
Nye, E.
Jones, N.
Heride, C.
Gersch, M.
Wu, M.
Dinsmore, C.J.
Hammonds, T.R.
Kim, S.
Komander, D.
Urbe, S.
Clague, M.J.
Kessler, B.M.
Behrens, A.
(2021). USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma. Elife,
Vol.10.
show abstract
full text
Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient's 5-year survival rate is less than 5%. The ubiquitin-specific protease 28 (USP28) has been implicated in tumourigenesis through its stabilization of the oncoproteins c-MYC, c-JUN, and Δp63. Here, we show that genetic inactivation of Usp28-induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN, and Δp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumours and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma..
Messal, H.A.
Alt, S.
Ferreira, R.M.
Gribben, C.
Wang, V.M.
Cotoi, C.G.
Salbreux, G.
Behrens, A.
(2019). Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature,
Vol.566
(7742),
pp. 126-130.
show abstract
full text
Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1-4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed that-consistent with theory predictions-small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance and tissue curvature as fundamental determinants of epithelial tumorigenesis..
Ruiz, E.J.
Diefenbacher, M.E.
Nelson, J.K.
Sancho, R.
Pucci, F.
Chakraborty, A.
Moreno, P.
Annibaldi, A.
Liccardi, G.
Encheva, V.
Mitter, R.
Rosenfeldt, M.
Snijders, A.P.
Meier, P.
Calzado, M.A.
Behrens, A.
(2019). LUBAC determines chemotherapy resistance in squamous cell lung cancer. J exp med,
Vol.216
(2),
pp. 450-465.
show abstract
full text
Lung squamous cell carcinoma (LSCC) and adenocarcinoma (LADC) are the most common lung cancer subtypes. Molecular targeted treatments have improved LADC patient survival but are largely ineffective in LSCC. The tumor suppressor FBW7 is commonly mutated or down-regulated in human LSCC, and oncogenic KRasG12D activation combined with Fbxw7 inactivation in mice (KF model) caused both LSCC and LADC. Lineage-tracing experiments showed that CC10+, but not basal, cells are the cells of origin of LSCC in KF mice. KF LSCC tumors recapitulated human LSCC resistance to cisplatin-based chemotherapy, and we identified LUBAC-mediated NF-κB signaling as a determinant of chemotherapy resistance in human and mouse. Inhibition of NF-κB activation using TAK1 or LUBAC inhibitors resensitized LSCC tumors to cisplatin, suggesting a future avenue for LSCC patient treatment..
Wang, V.M.
Ferreira, R.M.
Almagro, J.
Evan, T.
Legrave, N.
Zaw Thin, M.
Frith, D.
Carvalho, J.
Barry, D.J.
Snijders, A.P.
Herbert, E.
Nye, E.L.
MacRae, J.I.
Behrens, A.
(2019). CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nat cell biol,
Vol.21
(11),
pp. 1425-1435.
show abstract
full text
Pancreatic ductal adenocarcinoma (PDAC) shows great cellular heterogeneity, with pronounced epithelial and mesenchymal cancer cell populations. However, the cellular hierarchy underlying PDAC cell diversity is unknown. Here we identify the tetraspanin CD9 as a marker of PDAC tumour-initiating cells. CD9high cells had increased organoid formation capability, and generated tumour grafts in vivo at limiting dilutions. Tumours initiated from CD9high cells recapitulated the cellular heterogeneity of primary PDAC, whereas CD9low cells produced only duct-like epithelial progeny. CD9 knockdown decreased the growth of PDAC organoids, and heterozygous CD9 deletion in Pdx1-Cre; LSL-KRasG12D; p53F/F mice prolonged overall survival. Mechanistically, CD9 promoted the plasma membrane localization of the glutamine transporter ASCT2, enhancing glutamine uptake in PDAC cells. Thus, our study identifies a PDAC subpopulation capable of initiating PDAC and giving rise to PDAC heterogeneity, suggesting that the cellular diversity of PDAC is generated by PDAC stem cell differentiation..
Foster, H.
Ruiz, E.J.
Moore, C.
Stamp, G.W.
Nye, E.L.
Li, N.
Pan, Y.
He, Y.
Downward, J.
Behrens, A.
(2019). ATMIN Is a Tumor Suppressor Gene in Lung Adenocarcinoma. Cancer res,
Vol.79
(20),
pp. 5159-5166.
show abstract
full text
Tumor cells proliferate rapidly and thus are frequently subjected to replication stress and the risk of incomplete duplication of the genome. Fragile sites are replicated late, making them more vulnerable to damage when DNA replication fails to complete. Therefore, genomic alterations at fragile sites are commonly observed in tumors. FRA16D is one of the most common fragile sites in lung cancer, however, the nature of the tumor suppressor genes affected by FRA16D alterations has been controversial. Here, we show that the ATMIN gene, which encodes a cofactor required for activation of ATM kinase by replication stress, is located close to FRA16D and is commonly lost in lung adenocarcinoma. Low ATMIN expression was frequently observed in human lung adenocarcinoma tumors and was associated with reduced patient survival, suggesting that ATMIN functions as a tumor suppressor in lung adenocarcinoma. Heterozygous Atmin deletion significantly increased tumor cell proliferation, tumor burden, and tumor grade in the LSL-KRasG12D; Trp53 F/F (KP) mouse model of lung adenocarcinoma, identifying ATMIN as a haploinsufficient tumor suppressor. ATMIN-deficient KP lung tumor cells showed increased survival in response to replication stress and consequently accumulated DNA damage. Thus, our data identify ATMIN as a key gene affected by genomic deletions at FRA16D in lung adenocarcinoma. SIGNIFICANCE: These findings identify ATMIN as a tumor suppressor in LUAD; fragility at chr16q23 correlates with loss of ATMIN in human LUAD and deletion of Atmin increases tumor burden in a LUAD mouse model..
Khan, O.M.
Carvalho, J.
Spencer-Dene, B.
Mitter, R.
Frith, D.
Snijders, A.P.
Wood, S.A.
Behrens, A.
(2018). The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J clin invest,
Vol.128
(4),
pp. 1326-1337.
show abstract
full text
The tumor suppressor FBW7 targets oncoproteins such as c-MYC for ubiquitylation and is mutated in several human cancers. We noted that in a substantial percentage of colon cancers, FBW7 protein is undetectable despite the presence of FBW7 mRNA. To understand the molecular mechanism of FBW7 regulation in these cancers, we employed proteomics and identified the deubiquitinase (DUB) USP9X as an FBW7 interactor. USP9X antagonized FBW7 ubiquitylation, and Usp9x deletion caused Fbw7 destabilization. Mice lacking Usp9x in the gut showed reduced secretory cell differentiation and increased progenitor proliferation, phenocopying Fbw7 loss. In addition, Usp9x inactivation impaired intestinal regeneration and increased tumor burden in colitis-associated intestinal cancer. c-Myc heterozygosity abrogated increased progenitor proliferation and tumor burden in Usp9x-deficient mice, suggesting that Usp9x suppresses tumor formation by regulating Fbw7 protein stability and thereby reducing c-Myc. Thus, we identify a tumor suppressor mechanism in the mammalian intestine that arises from the posttranslational regulation of FBW7 by USP9X independent of somatic FBW7 mutations..
Ferreira, R.M.
Sancho, R.
Messal, H.A.
Nye, E.
Spencer-Dene, B.
Stone, R.K.
Stamp, G.
Rosewell, I.
Quaglia, A.
Behrens, A.
(2017). Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression. Cell rep,
Vol.21
(4),
pp. 966-978.
show abstract
The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs), duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development..
Cremona, C.A.
Sancho, R.
Diefenbacher, M.E.
Behrens, A.
(2016). Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Semin cancer biol,
Vol.36,
pp. 52-61.
show abstract
Fbw7 is well characterised as a stem cell regulator and tumour suppressor, powerfully positioned to control proliferation, differentiation and apoptosis by targeting key transcription factors for ubiquitination and destruction. Evidence in support of these roles continues to accumulate from in vitro studies, mouse models and human patient data. Here we summarise the latest of these findings, highlighting the tumour-suppressive role of Fbw7 in multiple tissues, and the rare circumstances where Fbw7 activity can be oncogenic. We discuss mechanisms that regulate ubiquitination by Fbw7, including ubiquitin-specific proteases such as USP28 that counteract Fbw7 activity and thereby stabilise oncoproteins. Deubiquitination of key Fbw7 substrates to prevent their destruction is beginning to be appreciated as an important pro-tumourigenic mechanism. As the ubiquitin-proteasome system represents a largely untapped field for drug development, the interplay between Fbw7 and its counterpart deubiquitinating enzymes in tumours is likely to attract increasing interest and influence future treatment strategies..
Gruber, R.
Panayiotou, R.
Nye, E.
Spencer-Dene, B.
Stamp, G.
Behrens, A.
(2016). YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling. Gastroenterology,
Vol.151
(3),
pp. 526-539.
show abstract
BACKGROUND & AIMS: Pancreatitis is the most important risk factor for pancreatic ductal adenocarcinoma (PDAC). Pancreatitis predisposes to PDAC because it induces a process of acinar cell reprogramming known as acinar-to-ductal metaplasia (ADM)-a precursor of pancreatic intraepithelial neoplasia lesions that can progress to PDAC. Mutations in KRAS are found at the earliest stages of pancreatic tumorigenesis, and it appears to be a gatekeeper to cancer progression. We investigated how mutations in KRAS cooperate with pancreatitis to promote pancreatic cancer progression in mice. METHODS: We generated mice carrying conditional alleles of Yap1 and Taz and disrupted Yap1 and Taz using a Cre-lox recombination strategy in adult mouse pancreatic acinar cells (Yap1fl/fl;Tazfl/fl;Ela1-CreERT2). We crossed these mice with LSL-KrasG12D mice, which express a constitutively active form of KRAS after Cre recombination. Pancreatic tumor initiation and progression were analyzed after chemically induced pancreatitis. We analyzed pancreatic tissues from patients with pancreatitis or PDAC by immunohistochemistry. RESULTS: Oncogenic activation of KRAS in normal, untransformed acinar cells in the pancreatic tissues of mice resulted in increased levels of pancreatitis-induced ADM. Expression of the constitutive active form of KRAS in this system led to activation of the transcriptional regulators YAP1 and TAZ; their function was required for pancreatitis-induced ADM in mice. The JAK-STAT3 pathway was a downstream effector of KRAS signaling via YAP1 and TAZ. YAP1 and TAZ directly mediated transcriptional activation of several genes in the JAK-STAT3 signaling pathway; this could be a mechanism by which acinar cells that express activated KRAS become susceptible to inflammation. CONCLUSIONS: We identified a mechanism by which oncogenic KRAS facilitates ADM and thereby generates the cells that initiate neoplastic progression. This process involves activation of YAP1 and TAZ in acinar cells, which up-regulate JAK-STAT3 signaling to promote development of PDAC in mice..
Blaas, L.
Pucci, F.
Messal, H.A.
Andersson, A.B.
Josue Ruiz, E.
Gerling, M.
Douagi, I.
Spencer-Dene, B.
Musch, A.
Mitter, R.
Bhaw, L.
Stone, R.
Bornhorst, D.
Sesay, A.K.
Jonkers, J.
Stamp, G.
Malanchi, I.
Toftgård, R.
Behrens, A.
(2016). Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nat cell biol,
Vol.18
(12),
pp. 1346-1356.
show abstract
full text
The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or following stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumorigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance..
Blake, S.M.
Stricker, S.H.
Halavach, H.
Poetsch, A.R.
Cresswell, G.
Kelly, G.
Kanu, N.
Marino, S.
Luscombe, N.M.
Pollard, S.M.
Behrens, A.
(2016). Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. Elife,
Vol.5.
show abstract
full text
Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors..
Anjos-Afonso, F.
Loizou, J.I.
Bradburn, A.
Kanu, N.
Purewal, S.
Da Costa, C.
Bonnet, D.
Behrens, A.
(2016). Perturbed hematopoiesis in mice lacking ATMIN. Blood,
Vol.128
(16),
pp. 2017-2021.
show abstract
The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging..
Kanu, N.
Zhang, T.
Burrell, R.A.
Chakraborty, A.
Cronshaw, J.
DaCosta, C.
Grönroos, E.
Pemberton, H.N.
Anderton, E.
Gonzalez, L.
Sabbioneda, S.
Ulrich, H.D.
Swanton, C.
Behrens, A.
(2016). RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene,
Vol.35
(30),
pp. 4009-4019.
show abstract
The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability..
Diefenbacher, M.E.
Chakraborty, A.
Blake, S.M.
Mitter, R.
Popov, N.
Eilers, M.
Behrens, A.
(2015). Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer res,
Vol.75
(7),
pp. 1181-1186.
show abstract
The stability of several oncoproteins, including c-Myc, is regulated by ubiquitin-dependent degradation mediated by the SCF(Fbw7) ubiquitin ligase. This activity is antagonized by the deubiquitinase Usp28, which is highly expressed in murine and human intestinal cancers. Usp28 was previously shown to interact with its substrates via a "piggyback" interaction with Fbw7, which suggested that Fbw7 is required for Usp28 activity. Unexpectedly, we found that genetic deletion of Usp28 rescued the lethality of Fbw7-deficient primary fibroblasts. Moreover, Usp28 inactivation in the intestine (Usp28(ΔIEC)) ameliorated the hyperproliferation and the impaired goblet and Paneth cell differentiation observed in Fbw7(ΔIEC) mice. The aggressive intestinal tumor formation of APC(Min/+); Fbw7(ΔIEC) mice was restrained when Usp28 was inactivated concomitantly. In both fibroblasts and intestinal cells, Usp28 deficiency corrected the accumulation of SCF(Fbw7) substrate proteins, including NICD1, c-Jun, and c-Myc. These findings suggested that Usp28 function does not depend on the presence of Fbw7, but instead independently recognizes and deubiquitylates the same substrates as SCF(Fbw7). Fbw7 binds to a phosphorylated motif termed the phosphodegron and we found that Usp28 also interacted with this same motif, but only when it is unphosphorylated, offering a mechanistic explanation for identical substrate selection by Fbw7 and Usp28. Our results indicate an unusually direct antagonism between an E3 ligase and a deubiquitinase, Fbw7 and Usp28, in modulating intestinal homeostasis and cancer..
Sancho, R.
Cremona, C.A.
Behrens, A.
(2015). Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. Embo rep,
Vol.16
(5),
pp. 571-581.
show abstract
full text
The control of cell fate decisions is vital to build functional organs and maintain normal tissue homeostasis, and many pathways and processes cooperate to direct cells to an appropriate final identity. Because of its continuously renewing state and its carefully organised hierarchy, the mammalian intestine has become a powerful model to dissect these pathways in health and disease. One of the signalling pathways that is key to maintaining the balance between proliferation and differentiation in the intestinal epithelium is the Notch pathway, most famous for specifying distinct cell fates in adjacent cells via the evolutionarily conserved process of lateral inhibition. Here, we will review recent discoveries that advance our understanding of how cell fate in the mammalian intestine is decided by Notch and lateral inhibition, focusing on the molecular determinants that regulate protein turnover, transcriptional control and epigenetic regulation..
Chakraborty, A.
Diefenbacher, M.E.
Mylona, A.
Kassel, O.
Behrens, A.
(2015). The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat commun,
Vol.6,
p. 6782.
show abstract
The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterized, the mechanism of activation by Ras was elusive. Here we identify the uncharacterized ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras-Raf-MEK-ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 co-activator RACO-1, leading to RACO-1 protein stabilization. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation..
Behrens, A.
van Deursen, J.M.
Rudolph, K.L.
Schumacher, B.
(2014). Impact of genomic damage and ageing on stem cell function. Nat cell biol,
Vol.16
(3),
pp. 201-207.
show abstract
full text
Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells..
Sancho, R.
Gruber, R.
Gu, G.
Behrens, A.
(2014). Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell stem cell,
Vol.15
(2),
pp. 139-153.
show abstract
The adult pancreas is capable of limited regeneration after injury but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here, we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into α, δ, and β cells. Loss of Fbw7 stabilized the transcription factor Ngn3, a key regulator of endocrine cell differentiation. The induced β cells resemble islet β cells in morphology and histology, express genes essential for β cell function, and release insulin after glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type..
Diefenbacher, M.E.
Popov, N.
Blake, S.M.
Schülein-Völk, C.
Nye, E.
Spencer-Dene, B.
Jaenicke, L.A.
Eilers, M.
Behrens, A.
(2014). The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J clin invest,
Vol.124
(8),
pp. 3407-3418.
show abstract
Colorectal cancer is the third most common cancer worldwide. Although the transcription factor c-MYC is misregulated in the majority of colorectal tumors, it is difficult to target directly. The deubiquitinase USP28 stabilizes oncogenic factors, including c-MYC; however, the contribution of USP28 in tumorigenesis, particularly in the intestine, is unknown. Here, using murine genetic models, we determined that USP28 antagonizes the ubiquitin-dependent degradation of c-MYC, a known USP28 substrate, as well as 2 additional oncogenic factors, c-JUN and NOTCH1, in the intestine. Mice lacking Usp28 had no apparent adverse phenotypes, but exhibited reduced intestinal proliferation and impaired differentiation of secretory lineage cells. In a murine model of colorectal cancer, Usp28 deletion resulted in fewer intestinal tumors, and importantly, in established tumors, Usp28 deletion reduced tumor size and dramatically increased lifespan. Moreover, we identified Usp28 as a c-MYC target gene highly expressed in murine and human intestinal cancers, which indicates that USP28 and c-MYC form a positive feedback loop that maintains high c-MYC protein levels in tumors. Usp28 deficiency promoted tumor cell differentiation accompanied by decreased proliferation, which suggests that USP28 acts similarly in intestinal homeostasis and colorectal cancer models. Hence, inhibition of the enzymatic activity of USP28 may be a potential target for cancer therapy..
Zhang, T.
Cronshaw, J.
Kanu, N.
Snijders, A.P.
Behrens, A.
(2014). UBR5-mediated ubiquitination of ATMIN is required for ionizing radiation-induced ATM signaling and function. Proc natl acad sci u s a,
Vol.111
(33),
pp. 12091-12096.
show abstract
The Mre11/Rad50/NBS1 (MRN) protein complex and ATMIN protein mediate ATM kinase signaling in response to ionizing radiation (IR) and chromatin changes, respectively. NBS1 and ATMIN directly compete for ATM binding, but the molecular mechanism favoring either NBS1 or ATMIN in response to specific stimuli is enigmatic. Here, we identify the E3 ubiquitin ligase UBR5 as a key component of ATM activation in response to IR. UBR5 interacts with ATMIN and catalyzes ubiquitination of ATMIN at lysine 238 in an IR-stimulated manner, which decreases ATMIN interaction with ATM and promotes MRN-mediated signaling. We show that UBR5 deficiency, or mutation of ATMIN lysine 238, prevents ATMIN dissociation from ATM and inhibits ATM and NBS1 foci formation after IR, thereby impairing checkpoint activation and increasing radiosensitivity. Thus, UBR5-mediated ATMIN ubiquitination is a vital event for ATM pathway selection and activation in response to DNA damage..
Penicud, K.
Behrens, A.
(2014). DMAP1 is an essential regulator of ATM activity and function. Oncogene,
Vol.33
(4),
pp. 525-531.
show abstract
The hereditary autosomal recessive disease ataxia telangiectasia (A-T) is caused by mutation in the DNA damage kinase ATM. ATM's main function is to orchestrate DNA repair, thereby maintaining genomic stability. ATM activity is increased in response to several stimuli, including ionising radiation (IR) and hypotonic stress. DNMT1-associated protein 1 (DMAP1) is a member of the TIP60-p400 histone acetyl transferase (HAT) complex, which acetylates histone H4 at lysine 16 (H4K16) to affect chromatin relaxation and modulate ATM activation. Here we demonstrate that DMAP1 is required for both modes of ATM activation. Knockdown of DMAP1 impaired IR-induced ATM activation and consequently resulted in radiosensitivity and impaired the G2/M checkpoint. Moreover, DMAP1 was also required for efficient ATM signalling in response to hypotonic stress. Overexpression of DMAP1 increased IR-induced ATM substrate phosphorylation, suggesting that DMAP1 function is rate limiting for ATM signalling. DMAP1 associated with TIP60-dependent HAT activity, and depletion of DMAP1 reduced H4K16 acetylation in response to DNA damage. Treatment with histone deacetylase inhibitors rescued IR-induced ATM signalling in Dmap1-depleted cells. These results suggest that DMAP1 is a critical regulator of ATM activity and function..
Davies, C.C.
Chakraborty, A.
Diefenbacher, M.E.
Skehel, M.
Behrens, A.
(2013). Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. Embo j,
Vol.32
(11),
pp. 1556-1567.
show abstract
full text
c-Jun, the major component of the AP-1 transcription factor complex, has important functions in cellular proliferation and oncogenic transformation. The RING domain-containing protein RACO-1 functions as a c-Jun coactivator that molecularly links growth factor signalling to AP-1 transactivation. Here we demonstrate that RACO-1 is present as a nuclear dimer and that c-Jun specifically interacts with dimeric RACO-1. Moreover, RACO-1 is identified as a substrate of the arginine methyltransferase PRMT1, which methylates RACO-1 on two arginine residues. Arginine methylation of RACO-1 promotes a conformational change that stabilises RACO-1 by facilitating K63-linked ubiquitin chain formation, and enables RACO-1 dimerisation and c-Jun interaction. Abrogation of PRMT1 function impairs AP-1 activity and results in decreased expression of a large percentage of c-Jun target genes. These results demonstrate that arginine methylation of RACO-1 is required for efficient transcriptional activation by c-Jun/AP-1 and thus identify PRMT1 as an important regulator of c-Jun/AP-1 function..
Sancho, R.
Blake, S.M.
Tendeng, C.
Clurman, B.E.
Lewis, J.
Behrens, A.
(2013). Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions. Plos biol,
Vol.11
(6),
p. e1001586.
show abstract
FBW7 is a crucial component of an SCF-type E3 ubiquitin ligase, which mediates degradation of an array of different target proteins. The Fbw7 locus comprises three different isoforms, each with its own promoter and each suspected to have a distinct set of substrates. Most FBW7 targets have important functions in developmental processes and oncogenesis, including Notch proteins, which are functionally important substrates of SCF(Fbw7). Notch signalling controls a plethora of cell differentiation decisions in a wide range of species. A prominent role of this signalling pathway is that of mediating lateral inhibition, a process where exchange of signals that repress Notch ligand production amplifies initial differences in Notch activation levels between neighbouring cells, resulting in unequal cell differentiation decisions. Here we show that the downstream Notch signalling effector HES5 directly represses transcription of the E3 ligase Fbw7β, thereby directly bearing on the process of lateral inhibition. Fbw7(Δ/+) heterozygous mice showed haploinsufficiency for Notch degradation causing impaired intestinal progenitor cell and neural stem cell differentiation. Notably, concomitant inactivation of Hes5 rescued both phenotypes and restored normal stem cell differentiation potential. In silico modelling suggests that the NICD/HES5/FBW7β positive feedback loop underlies Fbw7 haploinsufficiency. Thus repression of Fbw7β transcription by Notch signalling is an essential mechanism that is coupled to and required for the correct specification of cell fates induced by lateral inhibition..
Fontana, X.
Hristova, M.
Da Costa, C.
Patodia, S.
Thei, L.
Makwana, M.
Spencer-Dene, B.
Latouche, M.
Mirsky, R.
Jessen, K.R.
Klein, R.
Raivich, G.
Behrens, A.
(2012). c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J cell biol,
Vol.198
(1),
pp. 127-141.
show abstract
The AP-1 transcription factor c-Jun is a master regulator of the axonal response in neurons. c-Jun also functions as a negative regulator of myelination in Schwann cells (SCs) and is strongly reactivated in SCs upon axonal injury. We demonstrate here that, after injury, the absence of c-Jun specifically in SCs caused impaired axonal regeneration and severely increased neuronal cell death. c-Jun deficiency resulted in decreased expression of several neurotrophic factors, and GDNF and Artemin, both of which encode ligands for the Ret receptor tyrosine kinase, were identified as novel direct c-Jun target genes. Genetic inactivation of Ret specifically in neurons resulted in regeneration defects without affecting motoneuron survival and, conversely, administration of recombinant GDNF and Artemin protein substantially ameliorated impaired regeneration caused by c-Jun deficiency. These results reveal an unexpected function for c-Jun in SCs in response to axonal injury, and identify paracrine Ret signaling as an important mediator of c-Jun function in SCs during regeneration..
Zhang, T.
Penicud, K.
Bruhn, C.
Loizou, J.I.
Kanu, N.
Wang, Z.-.
Behrens, A.
(2012). Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell rep,
Vol.2
(6),
pp. 1498-1504.
show abstract
Ataxia telangiectasia mutated (ATM) protein kinase activation by DNA double-strand breaks (DSBs) requires the Mre11-Rad50-NBS1 (MRN) complex, whereas ATM interactor (ATMIN) protein is required for ATM signaling induced by changes in chromatin structure. We show here that NBS1 and ATMIN proteins compete for ATM binding and that this mechanism controls ATM function. DSB-induced ATM substrate phosphorylation was increased in atmin mutant cells. Conversely, NBS1 deficiency resulted in increased ATMIN-dependent ATM signaling. Thus, the absence of one cofactor increased flux through the alternative pathway. Notably, ATMIN deficiency rescued the cellular lethality of NBS1-deficient cells, and NBS1/ATMIN double deficiency resulted in complete abrogation of ATM signaling and profound radiosensitivity. Hence, ATMIN and NBS1 mediate all ATM signaling by DSBs, and increased ATMIN-dependent ATM signaling explains the different phenotypes of nbs1- and atm-mutant cells. Thus, the antagonism and redundancy of ATMIN and NBS1 constitute a crucial regulatory mechanism for ATM signaling and function..
Jandke, A.
Da Costa, C.
Sancho, R.
Nye, E.
Spencer-Dene, B.
Behrens, A.
(2011). The F-box protein Fbw7 is required for cerebellar development. Dev biol,
Vol.358
(1),
pp. 201-212.
show abstract
The F-box protein Fbw7 (also known as Fbxw7, hCdc4 and Sel-10) functions as a substrate recognition component of a SCF-type E3 ubiquitin ligase. SCF(Fbw7) facilitates polyubiquitination and subsequent degradation of various proteins such as Notch, cyclin E, c-Myc and c-Jun. Fbw7 is highly expressed in the nervous system and controls neural stem cell differentiation and apoptosis via Notch and c-Jun during embryonic development (Hoeck et al., 2010). Fbw7 deletion in the neural lineage is perinatal lethal and thus prohibits studying the role of Fbw7 in the adult nervous system. fbw7 mRNA is highly expressed in the postnatal brain and to gain insights into the function of Fbw7 in postnatal neurogenesis we analysed Fbw7 function in the cerebellum. We generated conditional Fbw7-knockout mice (fbw7(∆Cb)) by inactivating Fbw7 specifically in the cerebellar anlage. This resulted in decreased cerebellar size, reduced Purkinje cell number and defects in axonal arborisation. Moreover, Fbw7-deficient cerebella showed supranumeral fissures and aberrant progenitor cell migration. Protein levels of the Fbw7 substrates Notch1 and N-terminally phosphorylated c-Jun were upregulated in fbw7(∆Cb) mice. Concomitant deletion of c-Jun, and also the junAA knock-in mutation which specifically abrogates c-Jun N-terminal phosphorylation, rescued Purkinje cell numbers and arborisation in the fbw7(∆Cb) background. Taken together these data demonstrate that Fbw7 is essential during cerebellar development, and identify N-terminally phosphorylated c-Jun as an important substrate of SCF(Fbw7) during neurogenesis..
Aguilera, C.
Nakagawa, K.
Sancho, R.
Chakraborty, A.
Hendrich, B.
Behrens, A.
(2011). c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature,
Vol.469
(7329),
pp. 231-235.
show abstract
AP-1 (activator protein 1) activity is strongly induced in response to numerous signals, including growth factors, cytokines and extracellular stresses. The proto-oncoprotein c-Jun belongs to the AP-1 group of transcription factors and it is a crucial regulator of intestinal progenitor proliferation and tumorigenesis. An important mechanism of AP-1 stimulation is phosphorylation of c-Jun by the Jun amino-terminal kinases (JNKs). N-terminal phosphorylation of the c-Jun transactivation domain increases target gene transcription, but a molecular explanation was elusive. Here we show that unphosphorylated, but not N-terminally phosphorylated c-Jun, interacts with Mbd3 and thereby recruits the nucleosome remodelling and histone deacetylation (NuRD) repressor complex. Mbd3 depletion in colon cancer cells increased histone acetylation at AP-1-dependent promoters, which resulted in increased target gene expression. The intestinal stem cell marker lgr5 was identified as a novel target gene controlled by c-Jun/Mbd3. Gut-specific conditional deletion of mbd3 (mbd3(ΔG/ΔG) mice) stimulated c-Jun activity and increased progenitor cell proliferation. In response to inflammation, mdb3 deficiency resulted in colonic hyperproliferation and mbd3(ΔG/ΔG) mice showed markedly increased susceptibility to colitis-induced tumorigenesis. Notably, concomitant inactivation of a single allele of c-jun reverted physiological and pathological hyperproliferation, as well as the increased tumorigenesis in mbd3(ΔG/ΔG) mice. Thus the transactivation domain of c-Jun recruits Mbd3/NuRD to AP-1 target genes to mediate gene repression, and this repression is relieved by JNK-mediated c-Jun N-terminal phosphorylation..
Loizou, J.I.
Sancho, R.
Kanu, N.
Bolland, D.J.
Yang, F.
Rada, C.
Corcoran, A.E.
Behrens, A.
(2011). ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer cell,
Vol.19
(5),
pp. 587-600.
show abstract
Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells..
Kanu, N.
Penicud, K.
Hristova, M.
Wong, B.
Irvine, E.
Plattner, F.
Raivich, G.
Behrens, A.
(2010). The ATM cofactor ATMIN protects against oxidative stress and accumulation of DNA damage in the aging brain. J biol chem,
Vol.285
(49),
pp. 38534-38542.
show abstract
Progressive accumulation of DNA damage is causally involved in cellular senescence and organismal aging. The DNA damage kinase ATM plays a central role in maintaining genomic stability. ATM mutations cause the genetic disorder ataxia telangiectasia, which is primarily characterized by progressive neurodegeneration and cancer susceptibility. Although the importance of ATM function to protect against oxidative DNA damage and during aging is well described, the mechanism of ATM activation by these stimuli is not known. Here we identify ATM interactor (ATMIN) as an essential component of the ATM signaling pathway in response to oxidative stress and aging. Embryos lacking ATMIN (atmin(Δ/Δ)) died in utero and showed increased numbers of cells positive for phosphorylated histone H2aX, indicative of increased DNA damage. atmin(Δ/Δ) mouse embryonic fibroblasts accumulated DNA damage and prematurely entered senescence when cultured at atmospheric oxygen levels (20%), but this defect was rescued by addition of an antioxidant and also by culturing cells at physiological oxygen levels (3%). In response to acute oxidative stress, atmin(Δ/Δ) mouse embryonic fibroblasts showed slightly lower levels of ATM phosphorylation and reduced ATM substrate phosphorylation. Conditional deletion of ATMIN in the murine nervous system (atmin(ΔN)) resulted in reduced numbers of dopaminergic neurons, as does ATM deficiency. ATM activity was observed in old, but not in young, control mice, but aging-induced ATM signaling was impaired by ATMIN deficiency. Consequently, old atmin(ΔN) mice showed accumulation of DNA damage in the cortex accompanied by gliosis, resulting in increased mortality of aging mutant mice. These results suggest that ATMIN mediates ATM activation by oxidative stress, and thereby ATMIN protects the aging brain by preventing accumulation of DNA damage..
Da Costa, C.R.
Villadiego, J.
Sancho, R.
Fontana, X.
Packham, G.
Nateri, A.S.
Behrens, A.
(2010). Bag1-L is a phosphorylation-dependent coactivator of c-Jun during neuronal apoptosis. Mol cell biol,
Vol.30
(15),
pp. 3842-3852.
show abstract
In the nervous system, cell death by apoptosis plays a critical role during normal development and pathological neurodegeneration. Jun N-terminal kinases (JNKs) are essential regulators of neuronal apoptosis. The AP-1 transcription factor c-Jun is phosphorylated at multiple sites within its transactivation domain by the JNKs, and c-Jun phosphorylation is required for JNK-induced neurotoxicity. While the importance of c-Jun as a mediator of apoptotic JNK signaling in neurons is firmly established, the molecular mechanism underlying the requirement for c-Jun N-terminal phosphorylation is enigmatic. Here we identify the multifunctional protein Bag1-L as a coactivator of phosphorylated c-Jun. Bag1-L preferentially interacts with N-terminally phosphorylated c-Jun, and Bag1-L greatly augments transcriptional activation by phosphorylated c-Jun. Chromatin immunoprecipitation experiments revealed binding of Bag1-L to the promoters of proapoptotic AP-1 target genes, and overexpression of Bag1-L augmented cell death in primary neurons. Therefore, Bag1-L functions as a coactivator regulating neurotoxicity mediated by phosphorylated c-Jun..
Sancho, R.
Jandke, A.
Davis, H.
Diefenbacher, M.E.
Tomlinson, I.
Behrens, A.
(2010). F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology,
Vol.139
(3),
pp. 929-941.
show abstract
BACKGROUND & AIMS: The E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (Fbw7) degrades several proto-oncogenes including c-Myc, cyclinE, Notch1, and c-Jun. Fbw7 is the fourth most frequently mutated gene in human colorectal carcinomas and has recently been described as a poor prognosis marker in human colorectal carcinoma; however, the molecular mechanism underlying fbw7 mutations in intestinal tumor suppression is unclear. METHODS: To address the role of fbw7 in intestinal homeostasis and tumorigenesis, we generated conditional knock-out mice lacking fbw7 in the intestine and evaluated the effect of fbw7 absence in normal intestinal homeostasis and in adenomatous polyposis coli-mediated tumorigenesis. In parallel, we analyzed a cohort of human tumors bearing mutations in fbw7. RESULTS: Fbw7 was found to be highly expressed in the transit-amplifying progenitor cell compartment, and its deletion resulted in impaired goblet cell differentiation and accumulation of highly proliferating progenitor cells. This function of Fbw7 was mirrored during tumor formation because absence of Fbw7 increased proliferation and decreased differentiation of tumors triggered by aberrant Wnt signalling. Fbw7 exhibited haploinsufficiency for intestinal tumor suppression. Biallelic fbw7 inactivation increased cellular proliferation in physiologic and pathologic conditions in a c-Jun-dependent manner. Increased Notch activity was also observed in human tumors carrying heterozygous fbw7 mutations, suggesting that fbw7 haploinsufficiency for antagonizing Notch activity is conserved between human and murine cancers. CONCLUSIONS: Fbw7 regulates intestinal biology and tumorigenesis by controlling the abundance of different substrates in a dose-dependent fashion, providing a molecular explanation for the heterozygous mutations of fbw7 observed in human colorectal carcinoma..
Davies, C.C.
Chakraborty, A.
Cipriani, F.
Haigh, K.
Haigh, J.J.
Behrens, A.
(2010). Identification of a co-activator that links growth factor signalling to c-Jun/AP-1 activation. Nat cell biol,
Vol.12
(10),
pp. 963-972.
show abstract
The AP-1 transcription factor c-Jun is essential for cellular proliferation in many cell types, but the molecular link between growth factors and c-Jun activation has been enigmatic. In this study we identify a previously uncharacterized RING-domain-containing protein, RACO-1 (RING domain AP-1 co-activator-1), as a c-Jun co-activator that is regulated by growth factor signalling. RACO-1 interacted with c-Jun independently of amino-terminal phosphorylation, and was both necessary and sufficient for c-Jun/AP-1 activation. Growth factor-mediated stimulation of AP-1 was attributable to MEK/ERK-dependent stabilization of RACO-1 protein. Stimulation of the MEK/ERK pathway strongly promoted Lys 63-linked ubiquitylation of RACO-1, which antagonized Lys 48-linked degradative auto-ubiquitylation of the same Lys residues. RACO-1 depletion reduced cellular proliferation and decreased expression of several growth-associated AP-1 target genes, such as cdc2, cyclinD1 and hb-egf. Moreover, transgenic overexpression of RACO-1 augmented intestinal tumour formation triggered by aberrant Wnt signalling and cooperated with oncogenic Ras in colonic hyperproliferation. Thus RACO-1 is a co-activator that links c-Jun to growth factor signalling and is essential for AP-1 function in proliferation..
Hoeck, J.D.
Jandke, A.
Blake, S.M.
Nye, E.
Spencer-Dene, B.
Brandner, S.
Behrens, A.
(2010). Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat neurosci,
Vol.13
(11),
pp. 1365-1372.
show abstract
Neural stem and progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes and oligodendrocytes. However, the mechanisms underlying the decision of a stem cell to either self-renew or differentiate are incompletely understood. We demonstrate here that Fbw7 (F-box and WD repeat domain containing-7), the substrate recognition component of an SCF (complex of SKP1, CUL1 and F-box protein)-type E3 ubiquitin ligase, is a key regulator of NSC/NPC viability and differentiation. The absence of Fbw7 in the mouse brain caused severely impaired stem cell differentiation and increased progenitor cell death. Fbw7 deficiency resulted in accumulation of two SCF(Fbw7) substrates, the transcription factors active Notch1 and N-terminally phosphorylated c-Jun. Genetic and pharmacological rescue experiments identified c-Jun as a key substrate of Fbw7 in controlling progenitor cell viability, whereas inhibition of Notch signaling alleviated the block in stem cell differentiation. Thus Fbw7 controls neurogenesis by antagonizing Notch and c-Jun N-terminal kinase (JNK)/c-Jun signaling..